Math, asked by chhaauhann, 2 months ago

2cospi/13 cos9pi/13+cos3pi/13+cos5pi/13=0

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

2 \cos \bigg( \frac{\pi}{13}  \bigg)  \cos \bigg( \frac{9\pi}{13}  \bigg) +  \cos \bigg( \frac{3\pi}{13}  \bigg) +  \cos \bigg( \frac{5\pi}{13}  \bigg)    \\

 = 2 \cos \bigg( \frac{\pi}{13}  \bigg)  \cos \bigg( \frac{9\pi}{13}  \bigg) +  2\cos \bigg( \frac{4\pi}{13}  \bigg)  \cos \bigg( \frac{\pi}{13}  \bigg)    \\

 = 2 \cos \bigg( \frac{\pi}{13}  \bigg)  \bigg \{ \cos \bigg( \frac{9\pi}{13}  \bigg) +  \cos \bigg( \frac{4\pi}{13}  \bigg)   \bigg \}   \\

 = 2 \cos \bigg( \frac{\pi}{13}  \bigg) . 2\cos \bigg( \frac{13\pi}{26}  \bigg)  \cos \bigg( \frac{5\pi}{26}  \bigg)    \\

 = 4 \cos \bigg( \frac{\pi}{13}  \bigg) \cos \bigg( \frac{\pi}{2}  \bigg)  \cos \bigg( \frac{5\pi}{26}  \bigg)    \\

 = 4 \cos \bigg( \frac{\pi}{13}  \bigg).(0).  \cos \bigg( \frac{5\pi}{26}  \bigg)    \\

 = 0

Similar questions