Math, asked by adarshchaubey1985, 11 months ago

2cot⁻¹ 2 + cosec⁻¹ 5/3 =π/2,Prove it.

Answers

Answered by MaheswariS
4

\underline{\textbf{To prove:}}

\mathsf{2\;cot^{-1}(2)+cosec^{-1}\left(\dfrac{5}{3}\right)=\dfrac{\pi}{2}}

\underline{\textbf{Solution:}}

\underline{\textsf{Formula used:}}

\mathsf{1.\;\;2\;tan^{-1}x=tan^{-1}\left(\dfrac{2x}{1-x^2}\right)}

\mathsf{2.\;\;sec^{-1}x+cosec^{-1}x=\dfrac{\pi}{2}}

\mathsf{3.\;\;cot^{-1}x=tan^{-1}\left(\dfrac{1}{x}\right)}

\mathsf{Consider}

\mathsf{2\;cot^{-1}(2)}

\mathsf{=2\;tan^{-1}\left(\dfrac{1}{2}\right)}

\textsf{Using formula (1),}

\mathsf{=tan^{-1}\left(\dfrac{2\left(\dfrac{1}{2}\right)}{1-\left(\dfrac{1}{2}\right)^2}\right)}

\mathsf{=tan^{-1}\left(\dfrac{1}{1-\dfrac{1}{4}}\right)}

\mathsf{=tan^{-1}\left(\dfrac{1}{\dfrac{3}{4}}\right)}

\mathsf{=tan^{-1}\left(\dfrac{4}{3}\right)}

\mathsf{Take,\;A=tan^{-1}\left(\dfrac{4}{3}\right)}

\mathsf{tanA=\dfrac{4}{3}}

\mathsf{sec^2A=1+tan^2A}

\mathsf{sec^2A=1+\dfrac{16}{9}}

\mathsf{sec^2A=\dfrac{25}{9}}

\mathsf{secA=\sqrt{\dfrac{25}{9}}}

\mathsf{secA=\dfrac{5}{3}}

\mathsf{A=sec^{-1}\left(\dfrac{5}{3}\right)}

\therefore\mathsf{Now,}

\mathsf{2\;cot^{-1}(2)+cosec^{-1}\left(\dfrac{5}{3}\right)}

\mathsf{=sec^{-1}\left(\dfrac{5}{3}\right)+cosec^{-1}\left(\dfrac{5}{3}\right)}

\textsf{Using formula (2)}

\mathsf{=\dfrac{\pi}{2}}

\implies\boxed{\mathsf{2\;cot^{-1}(2)+cosec^{-1}\left(\dfrac{5}{3}\right)=\dfrac{\pi}{2}}}

\underline{\textbf{Find more:}}

Prove that: tan inverse 63/16=sin inverse 5/13+cos inverse 3/5

https://brainly.in/question/11002993

Answered by pulakmath007
5

SOLUTION

TO PROVE

\displaystyle \sf{2  { \cot}^{ - 1} 2 +  { \csc}^{ - 1} \frac{5}{3}  =  \frac{\pi}{2}  }

PROOF

LHS

\displaystyle \sf{ = 2  { \cot}^{ - 1} 2 +  { \csc}^{ - 1} \frac{5}{3}   }

\displaystyle \sf{ = 2  \:  { \tan}^{ - 1}  \frac{1}{2} +  { \csc}^{ - 1} \frac{5}{3}   }

\displaystyle \sf{ =  { \tan}^{ - 1}  \frac{2. \frac{1}{2} }{1 -  { (\frac{1}{2} )}^{2} } +  { \csc}^{ - 1} \frac{5}{3}   }

\displaystyle \sf{ =   { \tan}^{ - 1}  \frac{1 }{1 -   \frac{1}{4} } +  { \csc}^{ - 1} \frac{5}{3}   }

\displaystyle \sf{ =   { \tan}^{ - 1}  \frac{1 }{  \frac{4 - 1}{4} } +  { \csc}^{ - 1} \frac{5}{3}   }

\displaystyle \sf{ =   { \tan}^{ - 1}  \frac{1 }{  \frac{3}{4} } +  { \csc}^{ - 1} \frac{5}{3}   }

\displaystyle \sf{ =   { \tan}^{ - 1}  \frac{4 }{3 } +  { \csc}^{ - 1} \frac{5}{3}   }

\displaystyle \sf{ =   { \sec}^{ - 1}   \sqrt{1 +  {  \bigg(\frac{4}{3}  \bigg)}^{2} }  +  { \csc}^{ - 1} \frac{5}{3}   }

\displaystyle \sf{ =   { \sec}^{ - 1}   \sqrt{1 +  {  \frac{16}{9} }}  +  { \csc}^{ - 1} \frac{5}{3}   }

\displaystyle \sf{ =   { \sec}^{ - 1}   \sqrt{ {  \frac{9 + 16}{9} }}  +  { \csc}^{ - 1} \frac{5}{3}   }

\displaystyle \sf{ =   { \sec}^{ - 1}   \sqrt{ {  \frac{25}{9} }}  +  { \csc}^{ - 1} \frac{5}{3}   }

\displaystyle \sf{ =   { \sec}^{ - 1}   \frac{5}{3}   +  { \csc}^{ - 1} \frac{5}{3}   }

\displaystyle \sf{ =   \frac{\pi}{2}  }

= RHS

Hence proved

Note : In the above proof csc refers to cosec

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Cos^-1(1-9^x/1+9^x) differentiate with respect to x

https://brainly.in/question/17839008

2. prove that the curl of the gradient of

(scalar function) is zero

https://brainly.in/question/19412715

Similar questions