Math, asked by abhishektripathi9122, 1 month ago

2cot 2theta+tan theta - cot theta is equal to

Answers

Answered by ChitranjanMahajan
13

the answer is 0

Given

2cot2θ + tanθ - cotθ

To Find

Simplified solution

Solution

2cot2θ + tanθ - cotθ

Applying formula tanx = sinx/cosx and cotx = cosx/sinx we get,

= 2\frac{cos2\theta}{sin2\theta} + \frac{sin\theta}{cos\theta} - \frac{cos\theta}{sin\theta}

Now adding the last two variables up we get

2\frac{cos2\theta}{sin2\theta} + \frac{sin^2\theta - cos^2\theta}{sin\theta cos\theta}

Now we need to use the formula cos2x = cos^2x - sin^2x = -(sin^2x - cos^2x) to get,

2\frac{cos2\theta}{sin2\theta} - \frac{cos2\theta}{sin\theta cos\theta}

Now multiplying 2 in the numerator and denominator of the second variable we get

2\frac{cos2\theta}{sin2\theta} - \frac{2cos2\theta}{2sin\theta cos\theta}

Now, applying the formula sin2x = 2sinxcosx we get

= 2\frac{cos2\theta}{sin2\theta} - \frac{2cos2\theta}{sin2\theta}

= cot2\theta - cot2\theta

= 0

Hence, the answer is 0

#SPJ2

Similar questions