Math, asked by yukti5882, 1 year ago

2cot inverse(7)+cos inverse (3/5)

Answers

Answered by MaheswariS
0

\textbf{Given:}

2\;cot^{-1}7+cos^{-1}\frac{3}{5}

\text{Take}\;2\;cot^{-1}7=A

\implies\;cot\frac{A}{2}=7

\implies\;tan\frac{A}{2}=\frac{1}{7}

\text{Using}

\bf\;tanA=\frac{2\;tan\frac{A}{2}}{1-tan^2\frac{A}{2}}

tanA=\frac{2(\frac{1}{7})}{1-\frac{1}{49}}

tanA=\frac{\frac{2}{7}}{\frac{48}{49}}

tanA=\frac{2}{7}{\times}\frac{49}{48}

tanA=\frac{7}{24}

\implies\boxed{A=tan^{-1}\frac{7}{24}}

\text{Take, }\;cos^{-1}\frac{3}{5}=B

\implies\;cosB=\frac{3}{5}

\implies\;secB=\frac{5}{3}

\text{Using}

\bf\;tan^2B=sec^2B-1

tan^2B=\frac{25}{9}-1

tan^2B=\frac{16}{9}

tanB=\frac{4}{3}

\implies\boxed{B=tan^{-1}\frac{4}{3}}

\text{Now,}

2\;cot^{-1}7+cos^{-1}\frac{3}{5}

=A+B

=tan^{-1}\frac{7}{24}+tan^{-1}\frac{4}{3}

\text{Using}

\boxed{tan^{-1}x+tan^{-1}y=tan^{-1}(\frac{x+y}{1-xy})}

=tan^{-1}(\frac{\frac{7}{24}+\frac{4}{3}}{1-\frac{7}{24}\frac{4}{3}})

=tan^{-1}(\frac{\frac{21+96}{72}}{1-\frac{28}{72}})

=tan^{-1}(\frac{\frac{117}{72}}{1-\frac{7}{18}})

=tan^{-1}(\frac{\frac{39}{24}}{\frac{11}{18}})

=tan^{-1}(\frac{\frac{39}{12}}{\frac{11}{9}})

=tan^{-1}(\frac{351}{132})

=tan^{-1}(\frac{117}{44})

Similar questions