Math, asked by risingstar37, 1 year ago

2cot2θ= cotθ-tanθ plz

Answers

Answered by 10230
0

Answer:

Step-by-step explanation:

take LHS

2 cot 2 theta

=2 (1/(tan 2 theta) )                 [∵ cot theta=1/ tan theta ]

=2 (1/( 2 tan theta/ 1-tan² theta) )           [∵ tan 2 theta= 2 tan theta/1-tan² theta]

= 2( 1-tan²theta/2 tan theta)

= (1-tan² theta/tan theta)

=((1/tan theta) -(tan² theta /tan theta))

= cot theta-(tan² theta/tan theta)

=cot theta-tan theta = RHS

Hence Proved.

Answered by suryansh14nov
0

Answer:

ake LHS

2 cot 2 theta

=2 (1/(tan 2 theta) )                 [∵ cot theta=1/ tan theta ]

=2 (1/( 2 tan theta/ 1-tan² theta) )           [∵ tan 2 theta= 2 tan theta/1-tan² theta]

= 2( 1-tan²theta/2 tan theta)

= (1-tan² theta/tan theta)

=((1/tan theta) -(tan² theta /tan theta))

= cot theta-(tan² theta/tan theta)

=cot theta-tan theta = RHS

Hence Proved.

Step-by-step explanation:

Hope it help you

PLzzz mark me as brainliest

Similar questions