2cot2θ= cotθ-tanθ plz
Answers
Answer:
Step-by-step explanation:
take LHS
2 cot 2 theta
=2 (1/(tan 2 theta) ) [∵ cot theta=1/ tan theta ]
=2 (1/( 2 tan theta/ 1-tan² theta) ) [∵ tan 2 theta= 2 tan theta/1-tan² theta]
= 2( 1-tan²theta/2 tan theta)
= (1-tan² theta/tan theta)
=((1/tan theta) -(tan² theta /tan theta))
= cot theta-(tan² theta/tan theta)
=cot theta-tan theta = RHS
Hence Proved.
Answer:
ake LHS
2 cot 2 theta
=2 (1/(tan 2 theta) ) [∵ cot theta=1/ tan theta ]
=2 (1/( 2 tan theta/ 1-tan² theta) ) [∵ tan 2 theta= 2 tan theta/1-tan² theta]
= 2( 1-tan²theta/2 tan theta)
= (1-tan² theta/tan theta)
=((1/tan theta) -(tan² theta /tan theta))
= cot theta-(tan² theta/tan theta)
=cot theta-tan theta = RHS
Hence Proved.
Step-by-step explanation:
Hope it help you
PLzzz mark me as brainliest