Math, asked by neelk4788, 15 days ago

2f x+1/x=6 find x^4+1/x^4

class 9​

Answers

Answered by amansharma264
5

EXPLANATION.

⇒ (x + 1/x) = 6.

As we know that,

Squaring on both sides of the equation, we get.

⇒ (x + 1/x)² = (6)².

⇒ x² + (1/x)² + 2(x)(1/x) = 36.

⇒ x² + 1/x² + 2 = 36.

⇒ x² + 1/x² = 36 - 2.

⇒ x² + 1/x² = 34.

Again squaring on both sides of the equation, we get.

⇒ (x² + 1/x²)² = (34)².

⇒ (x²)² + (1/x²)² + 2(x²)(1/x²) = 1156.

⇒ x⁴ + 1/x⁴ + 2 = 1156.

⇒ x⁴ + 1/x⁴ = 1156 - 2.

⇒ x⁴ + 1/x⁴ = 1154.

Answered by Anonymous
8

Step-by-step explanation:

if \: x +  \frac{1}{x}  = 6 \: find \:  {x}^{4}  +  \frac{1}{ {x}^{4} }

Short trick :-

Formula :-

if \:  \: x +  \frac{1}{x}  = y

then \:  \: {x}^{4}  +  \frac{1}{ {x}^{4} }  =  {y}^{2} - 4y² + 2

so \:  \:  \:  {x}^{4}  +  \frac{1}{ {x}^{4} }  =  {6}^{4} - 4(6)² +2

= 1296 – 4 × 36 + 2

= 1296 – 144 +2

 = 1246 – 142

 =1154

.

Similar questions