2integration sin2x tan2x dx
Answers
Answered by
1
Answer:
sin(2x)tan(2x)dx=12∫sin2(2x)1−sin2(2x)cos(2x)d(2x)
Make the substitution sin(2x)=t⟹cos(2x)d(2x)=dt . Thus,
∫sin2(2x)1−sin2(2x)cos(2x)d(2x)=t21−t2dt
=∫11−t2dt−∫dt=12ln∣∣∣1+t1−t∣∣∣−t+c
Similar questions