2kx + (k-1)y = 1, 3x - 5y =7. condition for no solution n find k.
Answers
Answer:
Step-by-step explanation:
Let's solve for k. ( Equation 1)
2kx+(k−1)(y)=1
Step 1: Add y to both sides.
2kx+ky−y+y=1+y
2kx+ky=y+1
Step 2: Factor out variable k.
k(2x+y)=y+1
Step 3: Divide both sides by 2x+y.
k(2x+y) /2x+y = y+1 /2x+y
k= y+1 /2x+y
Let's solve for x. (Equation 1)
2kx+(k−1)(y)=1
Step 1: Add -ky to both sides.
2kx+ky−y+−ky=1+−ky
2kx−y=−ky+1
Step 2: Add y to both sides.
2kx−y+y=−ky+1+y
2kx=−ky+y+1
Step 3: Divide both sides by 2k.
2kx /2k = −ky+y+1 /2k
x= −ky+y+1 /2k
Let's solve for x (Equation 2 )
3x−5y=7
Step 1: Add 5y to both sides.
3x−5y+5y=7+5y
3x=5y+7
Step 2: Divide both sides by 3.
3x /3 = 5y+7 /3
x= 5y /3 + 7 /3
Let's solve for y ( Equation 1)
2kx+(k−1)(y)=1
Step 1: Add -2kx to both sides.
2kx+ky−y+−2kx=1+−2kx
ky−y=−2kx+1
Step 2: Factor out variable y.
y(k−1)=−2kx+1
Step 3: Divide both sides by k-1.
y(k−1) /k−1 = −2kx+1 /k−1
y= −2kx+1 /k−1
Let's solve for y (Equation 2)
3x−5y=7
Step 1: Add -3x to both sides.
3x−5y+−3x=7+−3x
−5y=−3x+7
Step 2: Divide both sides by -5.
−5y /−5 = −3x+7 /−5
y= 3 x/5 + −7 /5