Math, asked by prathyu1254, 4 months ago

2log(2x)base at 8+log(x-1)2 base at 8=4/3

Answers

Answered by KishanKumar0001
0

Answer:

x is 2.

Step by step Explanation:

2 log_{8}(2x)  +  log_{8}(( {x  -  1})^{2} )  =  \frac{4}{3}  \\  = >  2 log_{8}(2x)  + 2 log_{8}(( {x  -  1}))  =  \frac{4}{3} \\  = >  2( log_{8}(2x)  +  log_{8}(( {x  -  1}) )  )=  \frac{4}{3} \\  =  > ( log_{8}(2x)  +  log_{8}(( {x  -  1}) )  )=  \frac{2}{3} \\  =  >  log_{8}(2x(x - 1))  =  \frac{2}{3}  \\  =  > (2x(x - 1)) =  {8}^{ \frac{2}{3} }  \\  = >  2 ({x}^{2}  - x) =  { {2}^{3} }^{ \frac{2}{3} }  =  {2}^{3 \times  \frac{2}{3} } =  {2}^{2}  = 4  \\  = >  2 ({x}^{2}  - x) =  4 \\  =  >  {x}^{2}  - x = 2 \\  =  >  {x}^{2}  - x - 2 = 0 \\  =  >  {x}^{2}  - 2x + x - 2 = 0 \\  =  > x( x - 2) + 1(x - 2) = 0 \\  =  > (x - 2)(x  + 1) = 0 \\  =  > x = 2 \: or \:  - 1 \\  (as \: log \: of \:  negative \: value \: is \: invalid \\  \: so \: x \: can \: not \: be \:  - 1) \\  = so \: x \: is \: 2(ans.)

Thank You...

Please Rate My Answer As Brainliest...

Follow if you find the answer Helpful...

Similar questions