2log cos theata +log(1+
tan²) theta
Answers
We know that :- 1 + tan²θ = sec²θ
Now , a log(b ) = log( b^a)
Now , log a + log b = log ab
we know that secθ = 1/ cos θ
we know log1 = 0
Answer : 0
_____________________
1. Cosθ = base / hypotenuse
2. cossecθ = 1/ sinθ
3. sec θ = 1/cosθ
4. Cotθ = 1/ tanθ
5. Sin²θ+ Cos²θ= 1
6. Sec²θ - tan²θ = 1
7. cosec ²θ - cot²θ = 1
8. sin(90°−θ) = cos θ
9. cos(90°−θ) = sin θ
10. tan(90°−θ) = cot θ
11. cot(90°−θ) = tan θ
12. sec(90°−θ) = cosec θ
13. cosec(90°−θ) = sec θ
14. Sin2θ = 2 sinθ cosθ
15. cos2θ = Cos²θ- Sin²θ
16. 1 - sin² θ = cos²θ
17. 1 - cos²θ = sin²θ
18. 1 + tan² θ= sec²θ
20. cotA = 1/tanA
21. 1 + tan²A = sec²A
22. sec²A - tan²A = 1
23. sec²A - 1 = tan²A
24. 1 + cot²A = cosec²A
25. cosec²A - 1 = cot²A
26. cosec²A - cotA = 1
Answer:
0
Step-by-step explanation:
We know that :- 1 + tan²θ = sec²θ
Now , a log(b ) = log( b^a)
Now , log a + log b = log ab
we know that secθ = 1/ cos θ
we know log1 = 0
Answer : 0