Math, asked by deveshkatlam4634, 8 months ago

2log cos theata +log(1+
tan²) theta

Answers

Answered by Asterinn
10

\implies2 log( \cos\theta )  +  log(1 +  {tan}^{2}\theta )

We know that :- 1 + tan²θ = sec²θ

\implies2 log( \cos\theta )  +  log(   \sec ^{2}\theta )

Now , a log(b ) = log( b^a)

\implies log ({\cos^{2}\theta})   +  log(   \sec ^{2}\theta )

Now , log a + log b = log ab

\implies log ({\cos^{2}\theta} \times   \sec ^{2}\theta)

we know that secθ = 1/ cos θ

\implies log ({\cos^{2}\theta} \times    \dfrac{1}{\cos^{2}\theta} )

\implies log1

we know log1 = 0

\implies0

Answer : 0

_____________________

\large\bf\blue{Additional-Information}

1. Cosθ = base / hypotenuse

2. cossecθ = 1/ sinθ

3. sec θ = 1/cosθ

4. Cotθ = 1/ tanθ

5. Sin²θ+ Cos²θ= 1

6. Sec²θ - tan²θ = 1

7. cosec ²θ - cot²θ = 1

8. sin(90°−θ) = cos θ

9. cos(90°−θ) = sin θ

10. tan(90°−θ) = cot θ

11. cot(90°−θ) = tan θ

12. sec(90°−θ) = cosec θ

13. cosec(90°−θ) = sec θ

14. Sin2θ = 2 sinθ cosθ

15. cos2θ = Cos²θ- Sin²θ

16. 1 - sin² θ = cos²θ

17. 1 - cos²θ = sin²θ

18. 1 + tan² θ= sec²θ

20. cotA = 1/tanA

21. 1 + tan²A = sec²A

22. sec²A - tan²A = 1

23. sec²A - 1 = tan²A

24. 1 + cot²A = cosec²A

25. cosec²A - 1 = cot²A

26. cosec²A - cotA = 1

Answered by Ravkiratchampshooter
0

Answer:

0

Step-by-step explanation:

We know that :- 1 + tan²θ = sec²θ

Now , a log(b ) = log( b^a)

Now , log a + log b = log ab

we know that secθ = 1/ cos θ

we know log1 = 0

Answer : 0

Similar questions