Math, asked by student2641, 7 months ago

2log cotx + 3log sinx - log c - 4logx + 7log y in logarithm​

Answers

Answered by Mrvagh151
3

This answer assumes that

log

(

x

)

=

log

e

(

x

)

, the natural logarithm.

First use the rule

log

(

a

b

)

=

b

log

(

a

)

:

y

=

log

(

sin

2

(

x

)

)

=

2

log

(

sin

(

x

)

)

From here, we need to know that

d

d

x

log

(

x

)

=

1

x

. Through the chain rule,

d

d

x

log

(

f

(

x

)

)

=

1

f

(

x

)

f

'

(

x

)

.

Then:

d

y

d

x

=

2

(

1

sin

(

x

)

)

(

d

d

x

sin

(

x

)

)

=

2

sin

(

x

)

(

cos

(

x

)

)

=

2

cot

(

x

)

Answered by kp2918130
1

Answer:

Let y=(sinx)logx

Taking logs both sides,

logy=logxlogsinx

Differentiating both sides w.r.t. x

1ydydx=logx(1sinx)(cosx)+logsinx(1x) ⇒1ydydx=logxcotx+logsinxx

⇒dydx=y(logxcotx+logsinxx)

⇒dydx=(sinx)logx(logxcotx+logsinxx)

Similar questions