2log25/24 + 3log9/5 - 4log3/4
Answers
Given : 2log25/24 + 3log9/5 - 4log3/4
To Find : Simplify
Solution:
2 log ( 25 / 24) + 3 log (9/5) - 4 log ( 3/4)
log ( a/ b) = log a - log b
= 2 log 25 - 2 log 24 + 3 log 9 - 3 log 5 - 4 log 3 + 4 log 4
= 2 log 5² - 2 log (8 x 3) + 3 log 3² - 3 log 5 - 4 log 3 + 4 log 2²
log aⁿ = n log a
= 4 log 5 - 2 log 8 - 2 log 3 + 6 log 3 - 3 log 5 - 4 log 3 + 8 log 2
= log 5 - 2 log 2³ + 8 log 2
= log 5 - 6 log 2 + 8 log 2
= log 5 + 2 log 2
= log 5 + log 2 + log 2
= log ( 5 * 2) + log 2
= log 10 + log 2
= 1 + log 2
= 1 + 0.3010
= 1.3010
2 log ( 25 / 24) + 3 log (9/5) - 4 log ( 3/4) = 1 + log 2
Learn More:
if x=log [a-b]; y=log [a+b] ; z= log [a2 - Brainly.in
brainly.in/question/13214148
If x=log(a+b) y=log(a-b) z=log(a²-b²). Then what is the relation ...
brainly.in/question/13203506
Step-by-step explanation:
Given 2log25/24 + 3log9/5 - 4log3/4
- So we can write this as
- 2 log (25/24) + 3 log (9/5) – 4 log (3/4)
- log (25/24)^2 + log (9/5)^3 – log (3/4)^4
- log (5^2 / 2^3 x 3)^2 + log (3^2 / 5)^3 – log (3 / 2^2)^4
- log (5^4 / 2^6 x 3^2) + log (3^6 / 5^3) – log 3^4 / 2^8
- log [(5^4 / 2^6 x 3^2) x 3^6 / 5^3 x 2^8 / 3^4]
- log [ 5 x 2^2]
- log 20 to base 10
- = 1.301
Reference link will be
https://brainly.co.id/tugas/3450150