CBSE BOARD XII, asked by neha287, 1 year ago

2log2x differentiate them

Answers

Answered by jaggu18
1
your answer for question
Attachments:
Answered by TanmayStatus
2

 \bf \orange{Question:}

 \tt{How  \: can \:  I  \: differentiate \:  2^{log}2x?}

 \bf \orange{Solution:}

*A2A.

Recall the formula:

 \tt{log_{e}xy=(\log_{e}x+\log_{e}y)}

This,in turn,implies that:

 \tt{\log_{e}2x=\log_{e}2+\log_{e}x}

Again,look at the formula:

\tt{\log_{a}b=\log_{c}b\times \log_{a}c}

This again gives the notion that:

 \tt{\log_{e}x=\log_{2}x\times \log_{e}2}

Henceforth,  \tt{2^{\log_{e}2x}=2^{\log_{e}2+\log_{e}x}}

 \tt{=2^{\log_{e}2}\cdot 2^{\log_{e}x}}

 \tt{=2^{\log_{e}2}\cdot 2^{\log_{2}x\cdot \log_{e}2}}

 \tt{=2^{\log_{e}2}\cdot (x^{\log_{e}2})}

Since, \log_{e}2 is a constant,we can replace(or rather substitute) it with n.

 \tt{\implies \dfrac{\mathrm d(2^{\log_{e}2x})}{\mathrm dx}=\dfrac{\mathrm d(2^{n}x^{n})}{\mathrm dx}}

 \tt{=2^{n}n(x^{n-1})}

 \tt{=2^{\log_{e}2}\log_{e}2\cdot (x^{\log_{e}2-1})}

\boxed{\boxed{\dfrac{\mathrm d(2^{\log_{e}2x})}{\mathrm dx}=2^{\log_{e}2}\log_{e}2\cdot (x^{\log_{e}2-1})}}

I hope it's helps you ☺️.

Please markerd as brainliest answer ✌️✌️.

Similar questions