∫2logx dx=?(a)2logx+1(log x+1)+C (b)x(log2+1)(log 2+1)+C(c)2logxlog2+C (d)2logx2+C
Answers
Answered by
2
❀
∫log(x2)log(x2)+log(x2−12x+36)dx∫log(x2)log(x2)+log(x2−12x+36)dx
Now, log(ab)=blog(a)log(ab)=blog(a)
And, if we factor x2−12x+36x2−12x+36,
1×1=1(coeffofx2),2(−6)=−12(coeff.ofx),−62=36(coeffofx0)1×1=1(coeffofx2),2(−6)=−12(coeff.ofx),−62=36(coeffofx0)
x2−12x+36x2−12x+36
(x−6)2(x−6)2
And, log((x−6)2)=2log(x−6)log((x−6)2)=2log(x−6)
∫2log(x)2log(x)+2log(x−6)dx∫2log(x)2log(x)+2log(x−6)dx
∫2×log(x)2(log(x)+log(x−6)dx∫2×log(x)2(log(x)+log(x−6)dx
22 and 22 cancel,
∫log(x)log(x)+log(x−6)dx∫log(x)log(x)+log(x−6)dx
Also, log(a)+log(b)=log(ab)log(a)+log(b)=log(ab)
∫log(x)log(x2−6x)dx∫log(x)log(x2−6x)dx
This could be calculated by this rule called Integration by Parts,
∫u(x)v′(x)dx=u(x)v(x)−∫u′(x)v(x)dx∫u(x)v′(x)dx=u(x)v(x)−∫u′(x)v(x)dx
If u(x)=log(x),v′(x)=1log(x2−6x),v(x)=∫1log(x2−6x)u(x)=log(x),v′(x)=1log(x2−6x),v(x)=∫1log(x2−6x)
So,
∫log(x)log(x2−6x)dx∫log(x)log(x2−6x)dx
log(x)×(∫1ln(x2+6x)dx)−∫1x×(∫1ln(x2+6x)dxdxlog(x)×(∫1ln(x2+6x)dx)−∫1x×(∫1ln(x2+6x)dxdx
This is complex, we cant find it
Answered by
0
∫log(x2)log(x2)+log(x2−12x+36)dx∫log(x2)log(x2)+log(x2−12x+36)dx
Now, log(ab)=blog(a)log(ab)=blog(a)
And, if we factor x2−12x+36x2−12x+36,
1×1=1(coeffofx2),2(−6)=−12(coeff.ofx),−62=36(coeffofx0)1×1=1(coeffofx2),2(−6)=−12(coeff.ofx),−62=36(coeffofx0)
x2−12x+36x2−12x+36
(x−6)2(x−6)2
And, log((x−6)2)=2log(x−6)log((x−6)2)=2log(x−6)
∫2log(x)2log(x)+2log(x−6)dx∫2log(x)2log(x)+2log(x−6)dx
∫2×log(x)2(log(x)+log(x−6)dx∫2×log(x)2(log(x)+log(x−6)dx
22 and 22 cancel,
∫log(x)log(x)+log(x−6)dx∫log(x)log(x)+log(x−6)dx
Also, log(a)+log(b)=log(ab)log(a)+log(b)=log(ab)
∫log(x)log(x2−6x)dx∫log(x)log(x2−6x)dx
This could be calculated by this rule called Integration by Parts,
∫u(x)v′(x)dx=u(x)v(x)−∫u′(x)v(x)dx∫u(x)v′(x)dx=u(x)v(x)−∫u′(x)v(x)dx
If u(x)=log(x),v′(x)=1log(x2−6x),v(x)=∫1log(x2−6x)u(x)=log(x),v′(x)=1log(x2−6x),v(x)=∫1log(x2−6x)
So,
∫log(x)log(x2−6x)dx∫log(x)log(x2−6x)dx
log(x)×(∫1ln(x2+6x)dx)−∫1x×(∫1ln(x2+6x)dxdxlog(x)×(∫1ln(x2+6x)dx)−∫1x×(∫1ln(x2+6x)dxdx
Similar questions