Math, asked by divaishikars, 5 hours ago

2logx + log 1/3-log 3/4 =2 ​

Answers

Answered by varadad25
7

Answer:

\displaystyle{\boxed{\red{\sf\:x\:=\:\dfrac{3b}{2}}}}

Step-by-step-explanation:

The given logarithmic equation is

\displaystyle{\sf\:2\:\log\:(\:x\:)\:+\:\log\:\left(\:\dfrac{1}{3}\:\right)\:-\:\log\:\left(\:\dfrac{3}{4}\:\right)\:=\:2}

We have to find the value of x.

Now,

\displaystyle{\sf\:2\:\log\:(\:x\:)\:+\:\log\:\left(\:\dfrac{1}{3}\:\right)\:-\:\log\:\left(\:\dfrac{3}{4}\:\right)\:=\:2}

We know that,

\displaystyle{\pink{\sf\:\log_b\:\left(\:\dfrac{x}{y}\:\right)\:=\:\log_b\:(\:x\:)\:-\:\log_b\:(\:y\:)}}

\displaystyle{\implies\sf\:2\:\log\:(\:x\:)\:+\:\log\:\left(\:\dfrac{\dfrac{1}{3}}{\dfrac{3}{4}}\:\right)\:=\:2}

\displaystyle{\implies\sf\:2\:\log\:(\:x\:)\:+\:\log\:\left(\:\dfrac{1}{3}\:\times\:\dfrac{4}{3}\:\right)\:=\:2}

\displaystyle{\implies\sf\:2\:\log\:(\:x\:)\:+\:\log\:\left(\:\dfrac{4}{9}\:\right)\:=\:2}

\displaystyle{\implies\sf\:2\:\log\:(\:x\:)\:+\:\log\:\left[\:\left(\:\dfrac{2}{3}\:\right)^2\:\right]\:=\:2}

We know that,

\displaystyle{\pink{\sf\:\log_b\:(\:a^k\:)\:=\:k\:\log_b\:(\:a\:)}}

\displaystyle{\implies\sf\:2\:\log\:(\:x\:)\:+\:2\:\log\:\left(\:\dfrac{2}{3}\:\right)\:=\:2}

\displaystyle{\implies\sf\:2\:\left[\:\log\:(\:x\:)\:+\:\log\:\left(\:\dfrac{2}{3}\:\right)\:\right] \:=\:2}

\displaystyle{\implies\sf\:\log\:(\:x\:)\:+\:\log\:\left(\:\dfrac{2}{3}\:\right)\:=\:1}

We know that,

\displaystyle{\pink{\sf\:\log_b\:(\:x\:)\:+\:\log_b\:(\:y\:)\:=\:\log_b\:(\:xy\:)}}

\displaystyle{\implies\sf\:\log\:\left(\:\dfrac{2x}{3}\:\right)\:=\:1}

We know that,

\displaystyle{\pink{\sf\:\log_b\:(\:b\:)\:=\:1}}

\displaystyle{\implies\sf\:\log_b\:\left(\:\dfrac{2x}{3}\:\right)\:=\:\log_b\:(\:b\:)}

Taking antilog to the base b on both sides, we get,

\displaystyle{\implies\sf\:\dfrac{2x}{3}\:=\:b}

\displaystyle{\implies\sf\:2x\:=\:3b}

\displaystyle{\implies\underline{\boxed{\red{\sf\:x\:=\:\dfrac{3b}{2}}}}}

Answered by Anonymous
8

\huge\mathfrak\red{answer}

x =  \frac{3b}{2}

Attachments:
Similar questions