Math, asked by simantinisule, 2 months ago

(2m+1)³+(n+3)³/(2m+1)³-(n+3)=536/193 and n²-m²/n²+m²=155/493 find m and n​

Answers

Answered by abhicks
2

Step-by-step explanation:

 \frac{ {n}^{2} -  {m}^{2}  }{ {n}^{2} +  {m}^{2}  }  =  \frac{155}{493}

Componendo & Dividendo

 \frac{ {n}^{2} -  {m}^{2} - ( {n}^{2} +  {m}^{2} )   }{ {n}^{2}  -   {m}^{2}  + ( {n}^{2} +  {m}^{2}  ) }  =  \frac{155 - 493}{155 + 493}

 =  >  \frac{ - 2 {m}^{2} }{2 {n}^{2} }  =  \frac{ - 338}{648}

 =  >  \frac{ {m}^{2} }{ {n}^{2} }  =  \frac{338}{648}  =  \frac{169}{324}  =  \frac{ {13}^{2} }{ {18}^{2} }

 =  >  {( \frac{m}{n} )}^{2}  =  ({ \frac{13}{18} })^{2}

 =  >  \frac{m}{n}  =  \frac{13}{18}

 \frac{( {2m + 1})^{3} +  ({n + 3})^{3}  }{ ({2m + 1})^{3}  -  ({n + 3})^{3} }  =  \frac{536}{193}

Componendo & Dividendo,

 =  >  \frac{ 2({n + 3})^{3} }{2( {2m + 1})^{3} }  =  \frac{536 - 193}{536 + 193}  =  \frac{343}{729}

 =  >   ({ \frac{n + 3}{2m + 1} })^{3}  =  \frac{ {7}^{3} }{ {9}^{3} }  = ( { \frac{7}{9} })^{3}

 =  >  \frac{n + 3}{2m + 1}  =  \frac{7}{9}

 =  > 9(n + 3) = 7(2m + 1)

 =  > 9n + 27 = 14m + 7

 =  > 9n = 14m - 20 \:  \:  \:  -  > eq1

We also know that,

 \frac{m}{n}  =  \frac{13}{18}

 =  > m = ( \frac{13}{18} )n \:  \:  \:  -  > eq2

Substituting Eq 2 in Eq 1, we get

 =  > 9n = 14( \frac{13}{18} )n - 20

 =  > 9n =  \frac{91n}{9}  - 20

 =  >  \frac{91n}{9}  - 9n = 20

 =  >  \frac{91n - 81n}{9}  = 20

 =  >  \frac{10n}{9}  = 20

 =  >  \frac{n}{9}  = 2

 =  > n = 18

 =  > m = ( \frac{13}{18} )n =  \frac{13}{18}  \times 18 = 13

Therefore,

  • m = 13
  • n = 18

Hope this helps!

Similar questions