Math, asked by 33229rsi, 15 hours ago

2M If cos20= and sin20= 1-M2 then is 1+M 2 1+ M2 pla say to me​

Answers

Answered by manishnikhilkumar123
0

Answer:

Correct options are B) and C)

Let t=tan

2

2

θ

(m+2)sinθ+(2m−1)cosθ=2m+1

⇒(m+2)

1+t

2

2t

+(2m−1)

1+t

2

1−t

2

=2m+1

2mt+4t+2m−2mt

2

−1+t

2

=2m+2mt

2

+1+t

2

⇒(2t−1)(mt−1)=0

Gives t=

2

1

or t=

m

1

For t=tan

2

2

θ

=

2

1

⇒tanθ=

1−t

2

2t

=

1−

4

1

1

=

3

4

For t=tan

2

2

θ

=

m

1

⇒tanθ=

1−t

2

2t

=

1−

m

2

1

2

m

1

=2m(m

2

−1)

Answered by SurajBrainlyStarz
0

Answer:

search-icon-header

Search for questions & chapters

search-icon-image

Join / Login

Question

If m

2

+m

2

+2mm

cosθ=1,

n

2

+n

2

+2nn

cosθ=1,

and mn+m

n

+(mn

+m

n)=cosθ=θ, then

prove that m

2

+n

2

=csc

2

θ.

Hard

Open in App

Open_in_app

Solution

verified

Verified by Toppr

The given relation can be written as

(m

+mcosθ

2

)+m

2

−m

2

cos

2

θ=1

or (m

+mcosθ

2

)=1−m

2

sin

2

θ

Similarly (n

+ncosθ)

2

=1−n

2

sin

2

θ

Now (m

+mcosθ)=(n

+ncosθ)

m

n

+(mn

+m

n)cosθ+mncos

2

θ

=−mn+mncos

2

θ by given relation

=−mn(1−cos

2

θ)=−mnsin

2

θ

Now squaring both sides, we get

or (m

+mcosθ)

2

(n

+ncosθ)

2

=m

2

n

2

sin

4

θ

Hence substituting from (1) and (2) in (3), we get

(1−m

2

sin

2

θ)(1−n

2

sin

2

θ)=m

2

n

2

sin

4

θ

or =(m

2

+n

2

)sin

2

θ=1 i.e. =m

2

+n

2

=csc

2

θ

Similar questions