Math, asked by balaramkaligi, 11 months ago

2n = 64, then find the values of 2n+2 and 2n-2.​

Answers

Answered by AngelicSmiles
13

Answer:

given, 2n = 64

n = 64/2 = 32

putting value of n in the equations.

2n + 2 = 2(32) + 2

= 64 + 2 = 66

2n - 2 = 2(32) - 2

= 64 - 2

= 62

Answered by pulakmath007
3

\displaystyle \sf{  {2}^{n + 2}   = 256 \:  \: and \:  \:  {2}^{n - 2}  = 16 }

Correct question :

\displaystyle \sf{  {2}^{n }   = 64   \: \: then  \:find  \:the  \: values \:  of \:  \:  {2}^{n + 2}   \:  \: and \:  \:  {2}^{n - 2} }

Given :

\displaystyle \sf{  {2}^{n }   = 64 }

To find :

\displaystyle \sf{  {2}^{n + 2}   \:  \: and \:  \:  {2}^{n - 2}  }

Solution :

Step 1 of 2 :

Find the value of n

\displaystyle \sf{  {2}^{n } = 64   }

\displaystyle \sf{ \implies {2}^{n } =  {2}^{6} }

\displaystyle \sf{ \implies n = 6  }

Step 2 of 2 :

\displaystyle \sf{Find \:  the  \: values \:  of \:  \:  {2}^{n + 2}   \:  \: and \:  \:  {2}^{n - 2}  }

Now,

\displaystyle \sf{ {2}^{n + 2}   }

\displaystyle \sf{ =  {2}^{6 + 2}   }

\displaystyle \sf{ =  {2}^{8}   }

\displaystyle \sf{ = 256  }

Again,

\displaystyle \sf{ {2}^{n - 2}   }

\displaystyle \sf{ =  {2}^{6 - 2}   }

\displaystyle \sf{ =  {2}^{4}   }

\displaystyle \sf{ = 16  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. choose the correct alternative : 100¹⁰⁰ is equal to (a) 2¹⁰⁰ × 50¹⁰⁰ (b) 2¹⁰⁰ + 50¹⁰⁰ (c) 2² × 50⁵⁰ (d) 2² + 50⁵⁰

https://brainly.in/question/47883149

2. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

#SPJ3

Similar questions