Math, asked by Melsievers, 10 months ago

(2p+3p)(4p²-6pq+9q²)​

Answers

Answered by Anonymous
18

{\large{\pmb{\sf{\underline{\bigstar \: \: Required \: Solution...}}}}}

~ This question says that we have to expand the following by using suitable identity. Let us expand the given equation by using identity.

We are asked to expand:

\: \: \: \:{\small{\underline{\boxed{\sf{(2p+3q)(4p^{2}-6pq+9q^{2})}}}}}

Suitable identity:

\: \: \: \:{\small{\underline{\boxed{\sf{a^{3} + b^{3} \: = (a+b)(a^{2}-ab+b^{2})}}}}}

Full Solution:

{\sf{\dashrightarrow 2p+3q)(4p^{2}-6pq+9q^{2})}}

{\sf{\dashrightarrow a^{3} + b^{3} \: = (a+b)(a^{2}-ab+b^{2})}}

{\sf{\dashrightarrow (2p^{3} + 3q^{3})}}

\: \: \: \:{\small{\underline{\boxed{\sf{Solution \: = (2p^{3} + 3q^{3})}}}}}

Additional information:

  • Some identities:

\; \; \; \; \; \; \;{\sf{\leadsto (A+B)^{2} \: = \: = A^{2} \: + \: 2AB \: + B^{2}}}

\; \; \; \; \; \; \;{\sf{\leadsto (A-B)^{2} \: = \: = A^{2} \: - \: 2AB \: + B^{2}}}

\; \; \; \; \; \; \;{\sf{\leadsto A^{2} \: - B^{2} \: = \: (A+B) \: (A-B)}}

\; \; \; \; \; \; \;{\sf{\leadsto (A+B)^{2} \: = (A-B)^{2} \: +4AB}}

\; \; \; \; \; \; \;{\sf{\leadsto (A-B)^{2} \: = (A+B)^{2} \: -4AB}}

\; \; \; \; \; \; \;{\sf{\leadsto (A+B)^{3} \: = A^{3} + \: 3AB \: (A+B) \:+ B^{3}}}

\; \; \; \; \; \; \;{\sf{\leadsto (A-B)^{3} \: = A^{3} - \: 3AB \: (A-B) \: + B^{3}}}

\; \; \; \; \; \; \;{\sf{\leadsto A^{3} \: + B^{3} = \: (A+B) (A^{2} - AB + B^{2}}}

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:+\;b)^{2}\; =\;a^{2}\:+\:b^{2}\:+\:2ab}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:-\:b)^{2}\;=\;a^{2}\:+\:b^{2}\:-\:2ab}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:+\:b\:+\:c)^{2}\;=\;a^{2}\:+\:b^{2}\:+\:c^{2}\:+\:2ab\:+\:2bc\:+\:2ac}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:+\;b)^{3}\;=\;a^{3}\:+\:b^{3}\:+\:3ab(a\:+\:b)}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:-\;b)^{3}\;=\;a^{3}\:-\:b^{3}\:-\:3ab(a\:-\:b)}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto \;\;(a+b)^{2} \: = \: a^{2} + 2ab + b^{2}}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto \;\;(a-b)^{2} \: = a^{2} - 2ab + b^{2}}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto \;\;(a+b)(a-b) \: = \: a^{2} - b^{2}}\end{gathered}

  • Knowledge about Quadratic equations -

★ Sum of zeros of any quadratic equation is given by ➝ α+β = -b/a

★ Product of zeros of any quadratic equation is given by ➝ αβ = c/a

★ A quadratic equation have 2 roots

★ ax² + bx + c = 0 is the general form of quadratic equation

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━

Answered by ItzMarvels
12

__________________

♧Question♧

  • (2p+3p)(4p²-6pq+9q²)

♧Answer♧

\dashrightarrow\rm{(2p+3p)(4p²-6pq+9q²)}

By using this formula,

\rm \red{∵(a^{3} + b^{3}) = (a + b)(a^{2} - ab + b^{2})}

☆So we can write it as.

 \dashrightarrow \boxed {\red{ \rm{(2p^{3} +3p^{3} )}}}   \:  \:  \:  \:  \: \large\rm{Ans}

Additional information:-

  • ➠(a³ + b³) = (a + b)(a² - ab + b²)
  • ➠(a³ - b³) = (a - b)(a² + ab + b²)
  • ➠(a + b)² - (a - b)² = 4ab
  • ➠2(a² + b²) = (a + b)² + (a - b)²

__________________

Similar questions