Math, asked by yoihenba47, 2 months ago

(2r-s-t)^2 with the formula (A+b+c)^2 = A^2 + B^2 + c^2 + 2ab + 2bc + 2ca​

Answers

Answered by atulpurbey2
1

Answer:

4r^2+s^2+t^2-4rs+2st-4rt

Answered by negiwinutkarsh
1

Answer:

The square of the sum of three or more terms can be determined by the formula of the determination of the square of sum of two terms.

Now we will learn to expand the square of a trinomial (a + b + c).

Let (b + c) = x      

Then (a + b + c)2 = (a + x)2 = a2 + 2ax + x2

                        = a2 + 2a (b + c) + (b + c)2

                        = a2 + 2ab + 2ac + (b2 + c2 + 2bc)

                        = a2 + b2 + c2 + 2ab + 2bc + 2ca

Therefore, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

● (a + b - c)2 = [a + b + (-c)]2

                  = a2 + b2 + (-c)2 + 2ab + 2 (b) (-c) + 2 (-c) (a)

                  = a2 + b2 + c2 + 2ab – 2bc - 2ca

Therefore, (a + b - c)2 = a2 + b2 + c2 + 2ab – 2bc - 2ca

● (a - b + c)2 = [a + (- b) + c]2

                  = a2 + (-b2) + c2 + 2 (a) (-b) + 2 (-b) (-c) + 2 (c) (a)

                  = a2 + b2 + c2 – 2ab – 2bc + 2ca

Therefore, (a - b + c)2 = a2 + b2 + c2 – 2ab – 2bc + 2ca

● (a - b - c)2 = [a + (-b) + (-c)]2

                  = a2 + (-b2) + (-c2) + 2 (a) (-b) + 2 (-b) (-c) + 2 (-c) (a)

                  = a2 + b2 + c2 – 2ab + 2bc – 2ca

Therefore, (a - b - c)2 = a2 + b2 + c2 – 2ab + 2bc – 2ca

HOPE IT HELP YOU PLZ MARK ME AS BRAINLEAST

Similar questions