Math, asked by NezukoKamado10, 7 hours ago

2r²+10r+11=0 completing the square

please help me guys with solution!!!

WARNING: IF YOUR ANSWER IS NOT CONNECTED, TO THE QUESTION YOUR ANSWER WILL BE REPORTED!!!​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {2r}^{2} + 10r + 11 = 0

can be rewritten as

\rm :\longmapsto\: {2r}^{2} + 10r =  - 11

Multiply by 2, on both sides, we get

\rm :\longmapsto\: {4r}^{2} + 20r =  - 22

\rm :\longmapsto\: {(2r)}^{2} + 2 \times 2r  \times 5=  - 22

Adding 25 on both sides, we get

\rm :\longmapsto\: {(2r)}^{2} + 2 \times 2r  \times 5 + 25=  - 22 + 25

\rm :\longmapsto\: {(2r)}^{2} + 2 \times 2r  \times 5 +  {5}^{2} =  3

\red{\rm :\longmapsto\: {(2r + 5)}^{2} =  3}

\rm :\longmapsto\:2r + 5 =  \:  \pm \:  \sqrt{3}

\rm :\longmapsto\:2r = \:  -  \: 5  \:  \pm \:  \sqrt{3}

\rm \implies\:r \:  =  \: \dfrac{ - 5  \: \pm \:  \sqrt{3} }{2}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions