Math, asked by ayushniroula0123, 11 months ago

2sin^2(45°-A)=1+sin2A prove this

Attachments:

Answers

Answered by yvenkatateja81075
9

Step-by-step explanation:

2 sin square( 45°-A)

(therefore;

by trigonometry ratios

sin45°=1)

=2sin2(1-A)

=2sin(1-A)

=1+sin2A

hence proved

I HOPE THIS WILL HELP YOU

Answered by Swarup1998
48

Trigonometry

Before we solve the problem, we must know some formulae:

\quad cos2\theta=1-2\:sin^{2}\theta

\quad cos(90^{\circ}-\theta)=sin\theta

We have to prove:

\quad 2\:sin^{2}(45^{\circ}-A)=1-sin2A

Proof.

Now, 2\:sin^{2}(45^{\circ}-A)

=1-cos\{2(45^{\circ}-A)\}

=1-cos(90^{\circ}-2A)

=1-sin2A

\therefore \color{blue}2\:sin^{2}(45^{\circ}-A)=1-sin2A

This completes the proof.

Another approach:

Now, 2\:sin^{2}(45^{\circ}-A)

=2\:(sin45^{\circ}\:cosA-cos45^{\circ}\:sinA)^{2}

=2\:\left(\frac{1}{\sqrt{2}}\:cosA-\frac{1}{\sqrt{2}}\:sinA\right)^{2}

=2*\frac{1}{2}*(cosA-sinA)^{2}

=cos^{2}A+sin^{2}A-2\:sinA\:cosA

=1-sin2A

\Rightarrow \color{blue}2\:sin^{2}(45^{\circ}-A)=1-sin2A

This completes the proof.

Similar questions