Math, asked by sarojaryan916, 6 months ago

2sin 2theta =√3 value of the theta​

Answers

Answered by anindyaadhikari13
5

Required Answer:-

Given:

  • 2sin(2x) = √3

To find:

  • The value of x.

Solution:

Given that,

➡ 2 sin(2x) = √3

➡ sin(2x) = √3/2

From Trigonometry Ratio Table,

➡ sin(2x) = sin(60°)

➡ 2x = 60°

➡ x = 60°/2

➡ x = 30°

Hence, the value of x is 30°

Answer:

  • x = 30°

Verification:

Let us verify our result.

When x = 30°,

2 sin(2x)

= 2 sin(2 × 30°)

= 2 sin(60°)

= 2 × √3/2

= √3

Hence, our answer is correct (Verified)

Trigonometry Ratio Table:

\sf Trigonometry\: Value \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm  \infty  \\ \\ \rm cosec A & \rm  \infty  & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm  \infty  \\ \\ \rm cot A & \rm  \infty  & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}

Relationship between Trigo Functions:

  • sin(x) = 1/cosec(x)
  • cos(x) = 1/sec(x)
  • tan(x) = 1/cot(x)
  • sin(x)/cos(x) = tan(x)
Similar questions