Math, asked by ankitkushwahagzp02, 1 month ago

(2sinθ+3cosθ) का अधिकतम मान कितना होगा!

Attachments:

Answers

Answered by VwirobiBrahma
1

Answer:

Ans is 2

Step-by-step explanation:

i hope it's helpful

Answered by kamalgharty4
1

Answer:

(2sinθ+3cosθ)=2....(1)

Simplify further,

(2sinθ+3cosθ)

2

+(3sinθ−2cosθ)

2

=4sin

2

θ+9cos

2

θ+12sinθcosθ+9sin

2

θ+4cos

2

θ−12sinθcosθ

=13sin

2

θ+13cos

2

θ

=13(sin

2

θ+cos

2

θ)

=13 (Because (sin

2

θ+cos

2

θ)=1)

Thus,

⇒(2sinθ+3cosθ)

2

+(3sinθ−2cosθ)

2

=13

⇒(2)

2

+(3sinθ−2cosθ)

2

=13 Using equation (1)

⇒(3sinθ−2cosθ)

2

=9

or (3sinθ−2cosθ)=±3

Hence proved.

Similar questions