2sin(45+theta)sin(45-theta)÷cos2theta
Answers
Answered by
1
The given expression is
Now using the product formula,
The above expression is
Answered by
0
Answer:
The given expression is
\frac{2\sin (45^o+\theta)\sin (45^o-\theta)}{\cos (2\theta)}
cos(2θ)
2sin(45
o
+θ)sin(45
o
−θ)
Now using the product formula,
2\sin (A+B)\sin (A-B)=\cos (2B)-\cos (2A)2sin(A+B)sin(A−B)=cos(2B)−cos(2A)
The above expression is
\frac{2\sin (45^o+\theta)\sin (45^o-\theta)}{\cos (2\theta)} = \frac{\cos (2\theta)-\cos (90^o)}{\cos (2\theta)} =\frac{\cos (2\theta)-0}{\cos (2\theta)} =1
cos(2θ)
2sin(45
o
+θ)sin(45
o
−θ)
=
cos(2θ)
cos(2θ)−cos(90
o
)
=
cos(2θ)
cos(2θ)−0
Similar questions