Math, asked by diksha6728, 1 year ago

2sin(45+theta)sin(45-theta)÷cos2theta

Answers

Answered by Pitymys
1

The given expression is

 \frac{2\sin (45^o+\theta)\sin (45^o-\theta)}{\cos (2\theta)}

Now using the product formula,

 2\sin (A+B)\sin (A-B)=\cos (2B)-\cos (2A)

The above expression is

 \frac{2\sin (45^o+\theta)\sin (45^o-\theta)}{\cos (2\theta)}   = \frac{\cos (2\theta)-\cos (90^o)}{\cos (2\theta)}  =\frac{\cos (2\theta)-0}{\cos (2\theta)}  =1

Answered by itzankit21
0

Answer:

The given expression is

\frac{2\sin (45^o+\theta)\sin (45^o-\theta)}{\cos (2\theta)}

cos(2θ)

2sin(45

o

+θ)sin(45

o

−θ)

Now using the product formula,

2\sin (A+B)\sin (A-B)=\cos (2B)-\cos (2A)2sin(A+B)sin(A−B)=cos(2B)−cos(2A)

The above expression is

\frac{2\sin (45^o+\theta)\sin (45^o-\theta)}{\cos (2\theta)} = \frac{\cos (2\theta)-\cos (90^o)}{\cos (2\theta)} =\frac{\cos (2\theta)-0}{\cos (2\theta)} =1

cos(2θ)

2sin(45

o

+θ)sin(45

o

−θ)

=

cos(2θ)

cos(2θ)−cos(90

o

)

=

cos(2θ)

cos(2θ)−0

Similar questions