Math, asked by rudraksh454, 1 year ago

2sin theta+ cos theta=2, find sin theta

Answers

Answered by Pitymys
2

Given  2 \sin \theta +\cos \theta =2 .

Rearranging the above equation and solving as a quadratic in  \sin \theta  ,

 \cos \theta =2-2 \sin \theta \\<br />\cos^2 \theta =(2-2 \sin \theta )^2\\<br />1-\sin^2 \theta=4(1-\sin \theta )^2\\<br />1-\sin^2 \theta=4-8\sin \theta+4\sin^2 \theta\\<br />5\sin^2 \theta-8\sin \theta+3=0<br />\sin \theta =\frac{8 \pm \sqrt{64-60}}{10}  \\<br />\sin \theta =\frac{8 \pm 2}{10}

 \sin \theta =1 \; or \; \sin \theta =0.6

Similar questions