Math, asked by Marchii566, 2 months ago

2sin15°cos75° =?????????????????? ​

Answers

Answered by Anonymous
6

As we know that,

  • 2sinA•cosB = sin(A + B) + sin(A – B)

If A = 15° and B = 75° , then

= 2sin15°cos75° = sin(15° - 75°) + sin(15° + 75°)

= 2sin15°cos75° = sin(-60°) + sin90°

= 2sin15°cos75° = -sin60° + sin90°

= 2sin15°cos75° = -√3/2 + 1

= 2sin15°cos75° = 1 - √3/2

= 2sin15°cos75° = (2 - √3)/2

________________________________

Answered by Anonymous
2

2 \sin15 \cos(90 - 15)  \\  \\  =  > 2 \sin15 \sin15 \\  \\  =  > 2 { \sin }^{2}15  = 2 {( \sin(45 - 30)) }^{2}  \\  \\  =  > 2 {( \sin45 \cos30 -  \cos45 \sin30)   }^{2}  \\  \\  =  > 2 {( \frac{1}{ \sqrt{2}} \times  \frac{ \sqrt{3} }{2}   -  \frac{1}{ \sqrt{2} } \times  \frac{1}{2}  )}^{2}  \\  \\  =  > 2 {( \frac{ \sqrt{3} }{2 \sqrt{2} }  -  \frac{1}{2 \sqrt{2} }) }^{2}  \\  \\  =  > 2 {( \frac{ \sqrt{3}  - 1}{2 \sqrt{2} }) }^{2}  \\  \\  =  > 2 \times  \frac{ {( \sqrt{3}  - 1)}^{2} }{8}  \\  \\  =  >  \frac{3 - 2 \sqrt{3} + 1 }{4}  \\  \\  =  >  \frac{4 - 2 \sqrt{3} }{4}  = 1 -    \frac{ \sqrt{3} }{2}

Similar questions