Math, asked by allanmroy2007, 14 hours ago

2sin² θ -2cosθ = 1/2

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

2 \sin^{2} ( \theta)  - 2 \cos( \theta)  =  \dfrac{1}{2}

 \implies4 \sin^{2} ( \theta)  - 4\cos( \theta)  =  1

 \implies4  - 4\cos^{2} ( \theta)  - 4\cos( \theta)  =  1  \\

 \implies3  - 4\cos^{2} ( \theta)  - 4\cos( \theta)  =  0  \\

 \implies   4\cos^{2} ( \theta)   + 4\cos( \theta)  - 3 =  0  \\

 \implies   4\cos^{2} ( \theta)   + 6\cos( \theta) - 2 \cos( \theta)   - 3 =  0  \\

 \implies 2 \cos ( \theta) \big( 2\cos( \theta)    + 3 \big) - 1 \big(2 \cos( \theta)   + 3  \big)=  0  \\

 \implies  \big( 2\cos( \theta)    + 3 \big) \big(2 \cos( \theta)    - 1\big)=  0  \\

 \implies   2\cos( \theta)    + 3  = 0  \:  \:  \:  \: or \:  \:  \:  \: 2 \cos( \theta)    - 1=  0  \\

 \implies   \cos( \theta)   =   - \dfrac{ 3}{2}   \:  \:  \:  \: or \:  \:  \:  \:  \cos( \theta)     =  \dfrac{1}{2}    \\

 \tt{since \:  \:  \: cos (\theta)  \in [ - 1,1]}

So,

 \implies  \cos( \theta)     =  \dfrac{1}{2}    \\

 \implies  \cos( \theta)     =   \cos \left(\dfrac{\pi}{3} \right)    \\

 \implies   \theta     =   2n \pi \pm\dfrac{\pi}{3}    \\

 \implies   \theta     =   2n \pi \pm\dfrac{\pi}{3}    \:  \:  \:  \:  \:  \:  \:  \:  \:  \: , \forall \: n \in   \mathbb{Z} \\

Similar questions