2sin²A -sin⁴A =1-cos⁴A .
Answers
Answered by
0
Answer:
LHS
2sin²A -sin⁴A
Sin²A(2- Sin²A)
Sin²A(2- 1+Cos²A)
(1- Cos²A) (1+ Cos²A)
using {(a-b)(a+b) = a²- b²} Here a= 1 , b = Cos²A
1- Cos⁴A
= RHS
Answered by
0
Step-by-step explanation:
sin²A = 1- cos²A
taking LHS
2sin²A - sin⁴A = 2(1 - cos²A) - (1 - [cos²A]²)
= 2 - 2cos²A - 1 + cos⁴A
= 1 - 2cos²A + cos⁴A
= sin²A + cos²A - 2 cos²A + cos⁴A
{ sin²A + cos²A = 1}
= sin²A - cos²A + cos⁴A
=( sin²A + cos²A) - cos⁴A
= 1 - cos⁴A
= RHS
Similar questions