2sin²theta+cos²theta=
Answers
Answered by
5
Answer:
Step-by-step explanation:
\begin{gathered}2 { \sin( \alpha ) }^{2} - { \cos( \alpha ) }^{2} = 2 \\ put \: cos { \alpha }^{2} = 1 - \sin( { \alpha }^{2} ) \\ 2 { \sin( \alpha ) }^{2} - (1 - { \sin( \alpha )) }^{2} = 2 \\ 3 \sin( {\alpha }^{2} ) = 3 \\ \sin( { \alpha }^{2} ) = 1 \\ \sin( \alpha ) = + - 1 \\ \alpha = + - \pi \div 2\end{gathered}
2sin(α)
2
−cos(α)
2
=2
putcosα
2
=1−sin(α
2
)
2sin(α)
2
−(1−sin(α))
2
=2
3sin(α
2
)=3
sin(α
2
)=1
sin(α)=+−1
α=+−π÷2
Similar questions