Math, asked by Preetiwari6604, 1 year ago

2sinA+3cosA=2 then prove that 3sina+2cosA=3

Answers

Answered by Anonymous
10

Correct question :-

If 2sinA + 3cosA = 2, then prove that 3sinA - 2cosA = ± 3

Solution :-

Given

2sinA + 3cosA = 2

Squaring on both sides

⇒ (2sinA + 3cosA)² = 2²

⇒ (2sinA)² + (3cosA)² + 2(2sinA)(3cosA) = 4

⇒ 4sin²A + 9cos²A + 12sinA.cosA = 4

⇒ 4 = 4sin²A + 9cos²A + 12.sinA.cosA --eq(1)

Let x = 3sinA - 2cosA

Squaring on both sides

⇒ x² = (3sinA - 2cosA)²

⇒ x² = (3sinA)² + (2cosA)² - 2(3sinA)(2cosA)

⇒ x² = 9sin²A + 4cos²A - 12sinA.cosA --- eq(2)

Adding eq(2) and eq(1)

⇒ x² + 4 = 9sin²A + 4cos²A - 12sinA.cosA + 4sin²A + 9cos²A + 12.sinA.cosA

⇒ x² + 4 = 13sin²A + 13cos²A

⇒ x² + 4 = 13(sin²A + cos²A)

⇒ x² + 4 = 13(1)

Since sin²A + cos²A = 1

⇒ x² + 4 = 13

⇒ x² = 13 - 4

⇒ x² = 9

⇒ x = √9

⇒ x = ± 3

⇒ 3sinA - cosA = ± 3

Hence proved


Anonymous: Nice ; )
Anonymous: Thanks
Answered by Anonymous
2

\huge{\mathfrak{\underline{\underline{</p><p><strong>Answer:</strong></p><p>}}}}

Given :-

2sinA + 3cosA = 2

Squaring on both sides

» (2sinA + 3cosA)² = 2²

» (2sinA)² + (3cosA)² + 2(2sinA)(3cosA) = 4

» 4sin²A + 9cos²A + 12sinA.cosA = 4

» 4 = 4sin²A + 9cos²A + 12.sinA.cosA......[1]

Let x = 3sinA - 2cosA

Squaring on both sides

» x² = (3sinA - 2cosA)²

» x² = (3sinA)² + (2cosA)² - 2(3sinA)(2cosA)

» x² = 9sin²A + 4cos²A - 12sinA.cosA ......[2]

Adding equation (2) and equation (1)

x² + 4 = 9sin²A + 4cos²A - 12sinA.cosA +

4sin²A + 9cos²A + 12.sinA.cosA

» x² + 4 = 13sin²A + 13cos²A

» x² + 4 = 13(sin²A + cos²A)

» x² + 4 = 13

Using identity :-

\huge{\boxed{\red{sin^{2}A + cos^{2}A = 1}}}

» x² + 4 = 13

» x² = 13 - 4

» x² = 9

» x = √9

» x = ± 3

» 3sinA - cosA = ± 3

Hence , proved

Similar questions