Math, asked by borahkrishtina80, 1 month ago

2sinAcosA+(cosA+sin)2-(2cosA+sinA)2 = psin2A +q .find the value of p and q

Answers

Answered by tennetiraj86
2

Step-by-step explanation:

Given:-

2SinACosA+(CosA+SinA)²-(2CosA+SinA)² = p Sin 2A + q

To find :-

Find the value of p and q ?

Solution :-

Given that

2 Sin A Cos A+(Cos A + Sin A)²-(2 Cos A + Sin A)² = p Sin 2A + q

On taking LHS

2SinACosA+(CosA+SinA)²-(2CosA+ SinA)²

We know that

Sin 2A = 2 Sin A Cos A ------(1)

and

(Cos A + Sin A)²

= Cos² A + 2 Sin A Cos A + Sin² A

Since , (a+b)² = a²+2ab+b²

=> (Sin² A + Cos² A ) + 2 Sin A Cos A

=> 1 + 2 Sin A Cos A

=> 1 + Sin 2 A ---------(2)

and

(2 Cos A + Sin A)²

=> 4 Cos² A + 4 Cos A Sin A +Sin² A

Since, (a+b)² = a²+2ab+b²

=>Cos²A+3Cos²A+2(2SinACosA)+Sin²A

=>(Sin²A+Cos²A)+2(2SinACosA)+3Cos²A

=> 1+ 2 Sin 2A + 3 Cos² A ------(3)

On adding (1)&(2)

Sin 2A + 1 + Sin 2 A

=> 2 Sin 2A + 1 ------------(4)

On subtracting (3) from (4)

=> (2 Sin 2A + 1 ) - (1+ 2 Sin 2A + 3 Cos² A)

=> 2 Sin 2A + 1 - 1 - 2 Sin 2A - 3 Cos² A

=> -3 Cos² A

=> -3 ( 1 - Sin² A)

=> -3 + 3 Sin² A

=> 3 Sin² A - 3

=> 3 Sin² A +(-3)

Now

We have ,

LHS = 3 Sin² A +(-3)

2SinACosA+(CosA+SinA)²-(2CosA+Sin A)²

= 3 Sin² A +(-3)

Now

We have,

3 Sin² A + (-3) = p Sin² A + q

On comparing both sides then

p = 3 and q = -3

Answer:-

The values of p and q are 3 and -3 respectively.

Used formulae:-

→ Sin 2A = 2 Sin A Cos A

→ Sin² A + Cos² A = 1

→ (a+b)² = a²+2ab+b²

Similar questions