Math, asked by DebbieDavid2150, 11 months ago

2sinsquaretheta-4=5costheta

Answers

Answered by DhanyaDA
3

Note:

let theta=a

Given

\sf 2sin^2a-4=5cosa

To find

The value of a

Explanation:

consider

 =  > 2 {sin}^{2} a - 4 = 5cosa

\boxed{\bf sin^2a+cos^2a=1}

\boxed{\bf sin^2a=1-cos^2a}

 =  > 2(1 -  {cos}^{2} a) - 4 = 5cosa

 =  > 2 - 2 {cos}^{2} a - 4 = 5cosa

 =  > 2 {cos}^{2} a + 5cosa + 2 = 0

Splitting the middle term

 =  > 2 {cos}^{2} a + 4cosa + cosa + 2 = 0

 =  > 2cosa(cosa + 2) + 1(cosa + 2) = 0

 =  > (2cosa + 1)(cosa + 2) = 0

 =  > 2cosa + 1 = 0  \\ =  > cosa =  \dfrac{ - 1}{2}

 =  > cosa + 2 = 0 \\  =  > cosa =  - 2 \: (negligible)

As cosa range is [-1,1]

 =  > cosa =  \dfrac{ - 1}{2}

\boxed{\sf a=120\degree}

Important formulas

 =  >  {cos}^{2} a +  {sin}^{2} a = 1 \\  \\  =  >  {sec}^{2} a -  {tan}^{2} a = 1 \\  \\  =  >  {cosec}^{2} a -  {cot}^{2} a = 1

Similar questions