Math, asked by Ambhikesh99, 1 year ago

2sinx/sin3x +tanx/tan3x
please answer it soon

Answers

Answered by Agastya0606
15

Given: The trigonometric term 2sinx/sin3x + tanx/tan3x

To find: The value of above expression?

Solution:

  • Now we have given the term 2sinx/sin3x + tanx/tan3x
  • Now we know that:

                sin 3x is 3sinx - 4sin^3 x

                tan 3x =  3tanx - tan^3x / 1 - 3tan^2x

  • So putting these values in it, we get:

                2sinx/ (3sinx - 4sin^3 x ) + tanx/ (3tanx - tan^3x / 1 - 3tan^2x)

  • Simplifying it, we get:

                2 / (3 - 4sin^2x) +  (1 - 3tan^2x / 3 - tan^2x )

  • Now converting them to sin and cos, we get:

                2 / (3 - 4sin^2x) +  (1 - (3 sin^2x / cos^2x) )/ (3 - (3 sin^2x / cos^2x) )

  • Again converting all to sin, we get:

                2 / (3 - 4sin^2x) +  (1 - (3 sin^2x / 1 - sin^2x)) / (3 - (3 sin^2x / 1 - sin^2x) )

  • Now simplifying, we get:

                2 / (3 - 4sin^2x) +  ( 1 - sin^2x - 3sin^2x /  3 - 3sin^2x - sin^2x )

                2 / (3 - 4sin^2x) + (1 - 4sin^2x / 3 - 4sin^2x )

  • Now denominators are same, so:

                ( 2 + 1 - 4sin^2x ) / 3 - 4sin^2x

                3 - 4sin^2x / 3 - 4sin^2x

                1

Answer:

            So the value of 2sinx/sin3x + tanx/tan3x is 1.

Answered by rk06789gmai
0

sin3x

+

tanx

tan3x

=

2sinx

3sinx-4sin3x

+

tanx

3tanx-tan3x

1-3tan2x

=

2

3-4sin2x

+

1-3tan2x

3-tan2x

=

2

3-4sin2x

+

1-3

sin2x

cos2x

3-

sin2x

cos2x

=

2

3-4sin2x

+

1-3

sin2x

1-sin2x

3-

sin2x

1-sin2x

=

2

3-4sin2x

+

1-sin2x-3sin2x

3-3sin2x-sin2x

=

2

3-4sin2x

+

1-4sin2x

3-4sin2x

=

2+1-4sin2x

3-4sin2x

=

3-4sin2x

3-4sin2x

=1

2sinx

sin3x

+

tanx

tan3x

=1.

FAQs on

Similar questions