Math, asked by worldcraftyo, 3 months ago

(2sqrt(3) - sqrt(5))/(2sqrt(2) + 3sqrt(3))​

Answers

Answered by tushtisharma26
6

rhis is a your answer

ok..

Attachments:
Answered by payalchatterje
11

Answer:

Required answer is \frac{18 - 4 \sqrt{6}  + 2 \sqrt{10} - 3 \sqrt{15}  }{19}

Step-by-step explanation:

Given,(2sqrt(3) - sqrt(5))/(2sqrt(2) + 3sqrt(3))

We can write,

 \frac{2 \sqrt{3} -  \sqrt{5}  }{2 \sqrt{2}  + 3 \sqrt{3} }

Here numerator is (3√3-√5) and denominator is (2√2+3√3)

We are multiplying numerator and denominator by (2√2-3√3) and get

 \frac{(2 \sqrt{3} -  \sqrt{5} )(2 \sqrt{2}   - 3 \sqrt{3} )}{(2 \sqrt{2}  + 3 \sqrt{3} )(2 \sqrt{2} - 3 \sqrt{3}  )}

=  \frac{4 \sqrt{3 \times 2} - 6 \sqrt{3 \times 3}  - 2 \sqrt{5 \times 2}  + 3 \sqrt{5 \times 3}  }{ {(2 \sqrt{2} )}^{2} -  {(3 \sqrt{3}) }^{2}  }

 =  \frac{4 \sqrt{6} - 18 - 2 \sqrt{10}  + 3 \sqrt{15}  }{8 - 27}  \\  =  \frac{4 \sqrt{6} - 18 - 2 \sqrt{10}  + 3 \sqrt{15}}{ - 19}  \\  =  \frac{18 - 4 \sqrt{6}  + 2 \sqrt{10} - 3 \sqrt{15}  }{19}

This is a problem of Power of indices.

Some important formulas of Power of indices :

{x}^{0}  = 1 \\  {x}^{1}  = x \\  {x}^{a}  \times  {x}^{b}  =  {x}^{a + b}  \\  \frac{ {x}^{a} }{ {x}^{b} }  =  {x}^{a - b} \\  {x}^{ {y}^{a} }   =  {x}^{ya}  \\  {x}^{ - 1}  =  \frac{1}{x}  \\  {x}^{a}  \times  {y}^{a}  =  {(xy)}^{a}

Power of indices related two more questions:

https://brainly.in/question/20611233

https://brainly.in/question/8929724

#SPJ2

Similar questions