Math, asked by Happy391, 1 year ago

2t + 1/3 = t/3 + 1 please answer too fastttt​

Answers

Answered by Anonymous
5

Answer :-

 \sf t=  \dfrac{2}{5}

Solution :-

 \sf 2t +  \dfrac{1}{3} =  \dfrac{t}{3} + 1

Transpose 1/3 to RHS [ + 1/3 becomes - 1/3]

 \sf 2t=  \dfrac{t}{3} -  \dfrac{1}{3}  + 1

Transpose t/3 to LHS [ + t/3 becomes - t/3]

 \sf 2t -  \dfrac{t}{3} =-  \dfrac{1}{3} + 1

Taking LCM

 \sf  \dfrac{2t(3)}{1(3)}  -  \dfrac{t}{3} =-  \dfrac{1}{3} +  \dfrac{1(3)}{1(3)}

 \sf  \dfrac{6t}{3}  -  \dfrac{t}{3} =-  \dfrac{1}{3} +  \dfrac{3}{3}

 \sf  \dfrac{6t - t}{3} = \dfrac{ - 1 + 3}{3}

 \sf  \dfrac{6t - t}{3} = \dfrac{2}{3}

 \sf  \dfrac{5t}{3} =\dfrac{2}{3}

Transpose 3 to RHS [Division becomes Multiplication]

 \sf  5t=  \dfrac{2}{3} \times 3

 \sf  5t =  \dfrac{6}{3}

 \sf  5t=2

Transpose 5 to RHS [Multiplication becomes division]

 \sf t=  \dfrac{2}{5}

 \sf  \therefore t= \dfrac{2}{5}

Verification :-

 \sf 2t +  \dfrac{1}{3} =  \dfrac{t}{3} + 1

 \sf  \implies 2( \dfrac{2}{5})  +  \dfrac{1}{3} =  \dfrac{\frac{2}{5} }{3} + 1

 \sf  \implies -  \dfrac{4}{5}  +  \dfrac{1}{3} =\dfrac{2}{5} \div 3 + 1

 \sf  \implies \dfrac{4}{5}  +  \dfrac{1}{3} =\dfrac{2}{5} \times  \dfrac{1}{3}  + 1

 \sf  \implies  \dfrac{4}{5}  +  \dfrac{1}{3} =  \dfrac{2}{15} + 1

 \sf  \implies \dfrac{4(3)}{5(3)}  +  \dfrac{1(5)}{3(5)} = - \dfrac{1}{15} +  \dfrac{1(15)}{1(15)}

 \sf  \implies \dfrac{12}{15}  +  \dfrac{5}{15} = \dfrac{2}{15} +  \dfrac{15}{15}

 \sf  \implies \dfrac{12 + 5}{15} = \dfrac{2 + 15}{15}

 \sf  \implies \dfrac{17}{15} = \dfrac{17}{15}

Answered by sairaj60
2

2t + 1/3 = t/3

2t - t/3 = - 1/3 + 1

Taking LCM

2t(3)/1(3) - t/3 = - 1/3 + 1

6t/3 - t/3 = - 1/3 + 1(3)/1(3)

(6t - t)/3 = - 1/3 + 3/3

5t/3 = ( - 1 + 3)/3

5t = - 2/3

5t = - 2/3 * 3

5t = -2

t = -2/5

Similar questions