Math, asked by shivakshthakur123, 3 months ago

2t+4/2t+4 + 5t =9 (where t is not equal to -2) find value of t​

Attachments:

Answers

Answered by Anonymous
12

Answer:

 \huge\star \underline{ \boxed{ \purple{Answer}}}\star

\sf{value\:of\:t\:is\:=\:\frac{8}{5}}

Step-by-step explanation:

Given :-

\sf{\frac{2t\:+\:4}{2t\:+\:4}\:+\:5t\:=\:9}

&

t -2

To Find :-

The value of t

Solution :-

\sf{\frac{2t\:+\:4}{2t\:+\:4}\:+\:5t\:=\:9}

\sf\green{Taking\:LCM}

\sf{\frac{2t\:+\:4\:+5t(2t\:+\:4)}{2t\:+\:4}\:=\:9}

\sf{\frac{2t\:+\:4\:+10t^2\:+\:20t}{2t\:+\:4}\:=\:9}

\sf\green{Cross\:Multiplying}

\sf{2t\:+\:4\:+10t^2\:+\:20t\:=\:18t\:+\:36}

\sf{10t^2\:+\:4t\:-32\:=\:0}

\sf\green{Since\:it\:is\:a\:quadractic\:eq^n}

\sf\pink{Hence,\:it\:can\:be\:breakdown}

\sf{10t^2\:+\:20t\:-\:16t\:-32\:=\:0}

\sf{10t(t\:+\:2)-\:16(t\:+\:2)\:=\:0}

\sf{(10t\:-\:16)(t\:+\:2)\:=\:0}

\sf{10t\:-\:16\:=\:0}

\sf{10t\:=\:16}

\sf{t\:=\:\frac{16}{10}}

\sf{t\:=\:\frac{8}{5} }

and,

{t\:+\:2\:=\:0}

{t\:=\:-2}

\sf\green{Since,\:its\:given\:that\:t\:≠\:-2}

\sf\boxed{So,\:value\:of\:t\:=\:\frac{8}{5}}

\huge\mathfrak\pink{Hope \: it \: helps \: you}

\huge\mathfrak\pink{friend}

Answered by SyedKafeel
0

Answer:

9/5

Step-by-step explanation:

hope you will like my answer

like my answer

Attachments:
Similar questions