Math, asked by Raja14311, 1 year ago

2tan-1 (cosec tan-1 x - tan cot-1 x)=tan-1 x


Raja14311: please gives me answer this question

Answers

Answered by Unknown135
39
that's the answer hope it helps you
Attachments:
Answered by tardymanchester
11

Answer:

LHS=RHS proved below.

Step-by-step explanation:

Given : 2\tan^{-1}(\csc(\tan^{-1}x)- \tan(\cot^{-1}x))=\tan^{-1}x

To find : To prove the above expression?

Solution :

Taking LHS,

2\tan^{-1}(\csc(\tan^{-1}x)- \tan(\cot^{-1}x))

=2\tan^{-1}(\csc(\csc\frac{\sqrt{1+x^2}}{x})- \tan(\tan\frac{1}{x}))

=2\tan^{-1}(\frac{\sqrt{1+x^2}}{x}-\frac{1}{x})

=2\tan^{-1}(\frac{\sqrt{1+x^2}-1}{x}

Put x=\tan \theta

=2\tan^{-1}(\frac{\sqrt{1+\tan^2\theta}-1}{\tan\theta}

=2\tan^{-1}(\frac{sec\theta-1}{\tan\theta}

=2\tan^{-1}(\frac{1-\cos\theta}{\sin\theta}

=2\tan^{-1}(\frac{2\sin^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}

=2\tan^{-1}(\tan\frac{\theta}{2}}

=\theta

=\tan^{-1}x

=RHS

LHS=RHS

Similar questions