Math, asked by sumit2499, 1 year ago

2tan^-1(tan(π/4-α/2)tan(π/4-β/2))=tan^-1(cosα.cosβ/sinα+sinβ)​

Answers

Answered by MaheswariS
4

\underline{\textbf{To prove:}}

\mathsf{2\;tan^{-1}\left(tan\left(\dfrac{\pi}{4}-\dfrac{\alpha}{2}\right)\;tan\left(\dfrac{\pi}{4}-\dfrac{\beta}{2}\right)\right)} \mathsf{=tan^{-1}\left(\dfrac{cos\alpha\;cos\beta}{sin\alpha+sin\beta}\right)}

\underline{\textbf{Solution:}}

\mathsf{Consider}

\mathsf{2\;tan^{-1}\left(tan\left(\dfrac{\pi}{4}-\dfrac{\alpha}{2}\right)\;tan\left(\dfrac{\pi}{4}-\dfrac{\beta}{2}\right)\right)}

\mathsf{Using,}

\boxed{\mathsf{2\;tan^{1}x=tan^{-1}\left(\dfrac{2x}{1-x^2}\right)}}

\mathsf{=tan^{-1}\left(\dfrac{2\,tan\left(\dfrac{\pi}{4}-\dfrac{\alpha}{2}\right)\;tan\left(\dfrac{\pi}{4}-\dfrac{\beta}{2}\right)}{1-tan^2\left(\dfrac{\pi}{4}-\dfrac{\alpha}{2}\right)\;tan^2\left(\dfrac{\pi}{4}-\dfrac{\beta}{2}\right)}\right)}

\mathsf{=tan^{-1}\left(\dfrac{2\,tanx\;tany}{1-tan^2x\;tan^2y}\right)}

\mathsf{where,\;x=tan\left(\dfrac{\pi}{4}-\dfrac{\alpha}{2}\right)\;and\;y=tan\left(\dfrac{\pi}{4}-\dfrac{\beta}{2}\right)}

\mathsf{=tan^{-1}\left(\dfrac{2\dfrac{sinx\,siny}{cosx\,cosy}}{1-\dfrac{sin^2x\,sin^2y}{cos^2x\,cos^2y}}\right)}

\mathsf{=tan^{-1}\left(\dfrac{2\dfrac{sinx\,siny}{cosx\,cosy}{\times}cos^2x\,cos^2y}{cos^2x\,cos^2y-sin^2x\,sin^2y}\right)}

\mathsf{=tan^{-1}\left(\dfrac{2\,sinx\,siny\;cosx\,cosy}{cos^2x\,cos^2y-sin^2x\,sin^2y}\right)}

\mathsf{=tan^{-1}\left(\dfrac{(2\,sinx\,cosx)(siny\,cosy)}{(cosx\,cosy)^2-(sinx\,siny)^2}\right)}

\mathsf{Using,}

\boxed{\mathsf{sin2A=2\;sinA\;cosA}}

\mathsf{=tan^{-1}\left(\dfrac{sin2x\;\frac{sin2y}{2}}{(cosx\,cosy-sinx\,siny)\,(cosx\,cosy+sinx\,siny)}\right)}

\mathsf{=tan^{-1}\left(\dfrac{sin2x\;sin2y}{2\;(cosx\,cosy-sinx\,siny)\,(cosx\,cosy+sinx\,siny)}\right)}

\mathsf{Using\;the\;identities,}

\boxed{\mathsf{cos(A+B)=cosA\,cosB-sinA\,sinB}}

\boxed{\mathsf{cos(A-B)=cosA\,cosB+sinA\,sinB}}

\mathsf{=tan^{-1}\left(\dfrac{sin2x\;sin2y}{2\;cos(x+y)\,cos(x-y)}\right)}

\mathsf{Using\;the\;idetity}

\boxed{\mathsf{cos(A+B)+cos(A-B)=2\,cosA\,cosB}}

\mathsf{=tan^{-1}\left(\dfrac{sin2x\;sin2y}{cos2x+cos2y}\right)}

\mathsf{=tan^{-1}\left(\dfrac{sin\,2\left(\dfrac{\pi}{4}-\dfrac{\alpha}{2}\right)\;sin\,2\left(\dfrac{\pi}{4}-\dfrac{\beta}{2}\right)}{cos\,2\left(\dfrac{\pi}{4}-\dfrac{\alpha}{2}\right)+cos\,2\left(\dfrac{\pi}{4}-\dfrac{\beta}{2}\right)}\right)}

\mathsf{=tan^{-1}\left(\dfrac{sin\left(\dfrac{\pi}{2}-\alpha\right)\;sin\left(\dfrac{\pi}{2}-\beta\right)}{cos\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\dfrac{\pi}{2}-\beta\right)}\right)}

\mathsf{=tan^{-1}\left(\dfrac{cos\,\alpha\;cos\,\beta}{sin\,\alpha+sin\,\beta}\right)}

\boxed{\mathsf{2\;tan^{-1}\left(tan\left(\dfrac{\pi}{4}-\dfrac{\alpha}{2}\right)\;tan\left(\dfrac{\pi}{4}-\dfrac{\beta}{2}\right)\right)=tan^{-1}\left(\dfrac{cos\alpha\;cos\beta}{sin\alpha+sin\beta}\right)}}

\underline{\textbf{Find more:}}

Similar questions