Math, asked by blizzard21, 9 months ago

2tan 30º/(1+tan^2 30º)


Answers

Answered by nishanthcm05
2

1 2

I hope this helped you a lot

Attachments:
Answered by prince5132
6

GIVEN :-

  • (2 tan 30°) / (1 + tan² 30°)

TO FIND :-

  • The value of (2 tan 30°) / (1 + tan² 30°)

SOLUTION :-

☛ Consider the trigonometry ratio's Chart.

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0  \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $    \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ &  1 &  $ \dfrac{1}{ \sqrt{3} } $ &0 \\  \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\  \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1  \\  \cline{1 - 6}\end{tabular}}

 \mapsto \sf \:  \dfrac{(2 \:  \tan 30 ^{ \circ} ) }{(1 +  \tan ^{2} 30^{\circ })}

☛ Now Substitute the values from above table.

 \mapsto \sf  \dfrac{ \bigg \lgroup2 \times \dfrac{1}{ \sqrt{3} } \bigg  \rgroup}{1 +  \bigg \lgroup \dfrac{1}{ \sqrt{3} }  \bigg \rgroup^{2} }   \\  \\  \\  \mapsto \sf \:  \dfrac{  \bigg(\dfrac{2}{ \sqrt{3}} \bigg) }{  \bigg(1 + \dfrac{1}{ \sqrt{9} } \bigg) }  \\  \\ \\   \mapsto \sf \:  \dfrac{  \bigg(\dfrac{2}{ \sqrt{3} } \bigg) }{ \bigg(1 +  \dfrac{1}{3}  \bigg)}  \\  \\  \\  \mapsto \sf \: \dfrac{   \bigg(\dfrac{2}{ \sqrt{3} }  \bigg)}{  \bigg(\dfrac{4}{3}  \bigg)}  \\  \\  \\  \mapsto \sf \:  \dfrac{ \cancel2}{ \sqrt{ \cancel3} }  \times\dfrac{ \cancel3}{ \cancel4}  \\  \\  \\  \mapsto \underline{ \boxed{ \red{ \bf \: \dfrac{(2 \:  \tan 30 ^{ \circ} ) }{(1 +  \tan ^{2} 30^{\circ })}  = \dfrac{ \sqrt{3} }{2}}}}

Hence the required answer is √3/2.

Similar questions