Math, asked by jadhavvaishali601, 3 months ago

2tan 45 degree+ cos 30 degree - sin 60 degree​

Answers

Answered by Anonymous
4

Given

 \tt \to2tan45^{ \circ}  + cos30^{ \circ} - sin60^{ \circ}

we have to simplify

We know

 \tt  \to \: tan45^{ \circ} =  1

 \tt \to \: cos30^{ \circ} =  \dfrac{ \sqrt{3} }{2}

 \tt \to \: sin60^{ \circ} =  \dfrac{ \sqrt{3} }{2}

Now put the value on

\tt \to2tan45^{ \circ}  + cos30^{ \circ} - sin60^{ \circ}

 \tt \to \: 2 \times 1 +  \dfrac{ \sqrt{3} }{2}  -  \dfrac{ \sqrt{3} }{2}

 \tt \to \: 2 +  \cancel{ \dfrac{ \sqrt{3} }{2}}  -  \cancel{ \dfrac{ \sqrt{3} }{2} }

 \tt \to \: 2

Answer

 \tt \to \: 2

More Formula Of Trigonometric

 \tt \to \: sin(2x) = 2cos(x)sin(x)

 \tt \to \: cos(2x) = cos {}^{2} x - sin {}^{2} x = 2cos {}^{2} x - 1

 \tt \to \: tan(2x) =  \dfrac{2tan(x)}{1 - tan(x)}

Similar questions