2tan A/1+tansquareA =2sinAintoCosA
Answers
Answered by
0
Step-by-step explanation:
2tan A/ (1 + (tan A)^2)
=> [2* sin A / cos A]/ [ 1 + (sin A)^2 / (cos A)^2]
=> [2* sin A / cos A]/ [ ((cos A)^2 + (sin A)^2) / (cos A)^2]
=> [2 sin A* (cos A)^2 / cos A]/ [ (cos A)^2 + (sin A)^2]
=> [2 sin A * cos A] / 1
Answered by
0
Step by step explaination
2tan A / ( 1 + ( tan A) ^2)
[2*sin A / cosA] / 1+ (sin A) ^2 / 1+ / (cos A ^2)
[ 2*sin A / (cosA] / [(( cosA)^2 + sin A^2/ ( cos A) ^2
[2* sinA* (cos A) ^2] /cos A]/ [(cosA)^2 + (sin A) ^2
[2 sinA* cos A] /1
Similar questions