Math, asked by SOULMEHUL, 1 year ago

2tan inverse 1/3 +tan inverse 1/ 4 ​

Answers

Answered by Anonymous
5

First We Have To Simplify

 \huge 2 \tan^{ - 1} (x)

Using FoRmuLa

 \huge \fbox{2 \tan^{ - 1} (x)  = \tan^{ - 1} ( \frac{ 2x }{1 -  {x}^{2} }  )}

By Putting The Value of x i FoRmuLa

 \huge {2 \tan^{ - 1} ( \frac{1}{3} )  = \tan^{ - 1} ( \frac{ 2 \times  \frac{1}{3} }{1 -  { (\frac{1}{3}) }^{2} }  )}

 \huge 2 \tan^{ - 1} ( \frac{1}{3} )  = \tan^{ - 1} ( \frac{ 3}{4 }  )

Now Let's Get Back To Question!!

We Have To Add It Using Formula

 \huge \fbox{\tan^{ - 1} (x)   + \tan^{ - 1} (y)= \tan^{ - 1} ( \frac{ x + y }{1 -  x \times y }  )}

Putting The Values of x and y

 \huge \tan^{ - 1} ( \frac{ 3}{4 }) +\tan^{ - 1} ( \frac{ 1}{4 })

 \huge \fbox{\tan^{ - 1} (\frac{3}{4})   + \tan^{ - 1} (\frac{1 }{4} )= \tan^{ - 1} ( \frac{\frac{3}{4} + \frac{1 }{4} }{1 -  \frac{3}{4} \times \frac{1 }{4} }  )}

So The Answer Is

 \huge \fbox{ \blue{\tan^{ - 1} (x)   + \tan^{ - 1} (y)= \tan^{ - 1} ( \frac{16}{13 }  )}}


Sanjeevliv: just delete brainly bro, why u want to delete account
Sanjeevliv: reply please
studentoftheyear10: Sir please say
Similar questions