Math, asked by Ayushkayastha, 1 year ago

2tansqx-5secx-1 has 7 different roots in [0,npie by 2]find greatest value of n​

Answers

Answered by Anonymous
8

Given

 \sf{2tan {}^{2}x - 5sec \: x \:  - 1 = 0 } \\  \\   \sf{since \: tan {}^{2}x = 1 - sec {}^{2}x} \\  \\  \rightarrow   \sf{2(1 - sec {}^{2}x) - 5sec \: x \:  - 1 = 0 } \\  \\  \rightarrow \:  \sf{ - 2sec {}^{2}x  + 2 - 5sec \: x \:  - 1 = 0} \\  \\  \rightarrow \:   \boxed{\sf{2sec {}^{2}x + 5sec \: x \:  - 1 = 0 }}

On comparing with ax²+bx+c = 0,

a = 2,b = 5 and c = 1

Discriminant,D :

 \sf{b {}^{2}  - 4ac = (5) {}^{2} - 4(2)( - 1) } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \sf{25 + 8} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 33

Now,

 \sf{sec \: x \:  =  \:  \frac{ - b \pm \:  \sqrt{d} }{2a} } \\  \\  \implies \:  \sf{sec \: x \:  =  \frac{ - 5 \pm \:  \sqrt{33} }{4} } \\  \\  \implies \:  \sf{sec \: x \:  =  \frac{ \sqrt{33}  - 5}{4} \: or \:   \frac{ - (5 +  \sqrt{33)} }{4}   }

Similar questions