Math, asked by adityapatra788, 2 months ago

2u+v=7/3 uv , u+3v =11/3 uv. solve it please​

Answers

Answered by xSoyaibImtiazAhmedx
0

\huge\underline{\overline{\mid\star{\mathfrak{\red{♦Solution ♦:—}}\star\mid}}}

Given ,

2u+v= \frac{7}{3}  uv

 \implies \: \:  \large{ \frac{6u}{uv}  +  \frac{3v}{uv}  = 7}

 \implies \:   \large{\frac{6}{v } +  \frac{3}{u}}  = 7 -  -  -  -  - (1)

And,

u+3v = \frac{11}{3} uv

 \implies \:   \frac{3u}{uv}  +  \frac{9v}{uv}  = 11

 \implies \:   \large{\frac{3}{v}  +  \frac{9}{u}  = 11} \:  -  -  -  -  -  - (2)

Let,

  \large{ \bold{\frac{1}{u}  \implies \: x}}

 \large{ \bold{ \frac{1}{v}  \implies \: y}}

So,

( 1 ) → 6y + 3x = 7

→ 3x + 6y = 7 -------(3)

( 2 ) →3y + 9x = 11

→ 9x + 3y = 11 -------(4)

 \bold{ \mathtt{ \bold{ \underline{We \:  \:  will \:  \:  solve  \:  \: it  \:  \: by  \:  \: Substituting  \:  \: Method}}}}

\large{ \mathcal{Now,}}

From eqn (3),

{ \boxed{ \bold  {x \:  =  \frac{7 - 6y}{3}}}} \:   \:   -  -  - (5)

Putting the value of x in eqn(4),

 \bold{9 \times  \frac{7 - 6y}{3}  + 3y = 11}

 \implies \: 3(7 - 6y) + 3y = 11

 \implies21 - 18y + 3y = 11

 \implies \:  - 15y =  - 10

 \implies    \boxed{\mathtt{\bold{\: y \:   = \frac{10}{15}  =  \frac{2}{3} }}}

Again, putting the value of y in eqn (5),

 x \:  =   \frac{7 - 6 \times  \frac{2}{3} }{3}

 \implies \: x \:  =  \frac{7 - 4}{3}

 \implies \: x \:   = \frac{3}{3}

 \implies  \large{ \boxed { \mathtt{\bold{ x \:  = 1}}}}

Now,

x \:  = 1

 \implies \:   \frac{1}{u}  = 1

y =  \frac{2}{3}

 \implies \:  \frac{1}{v}  =  \frac{2}{3}

 \implies \: v \:  =  \frac{3}{2}

\Large{\colorbox{yellow}{\underline{\underline{♠Answer♠:—\:\: u =1\:\:and\:\:v=\:\:3/2 }}}}

Similar questions