( 2x + 1 )² + ( x + 1)² = 6x + 47
Answers
Solution :
The given expression is :
> (2x + 1)² + (x + 1)² = 6x + 47
> [ 4x² + 4x + 1 ] + [ x² + 2x + 1 ] = 6x + 47
> 5x² + 6x + 2 = 6x + 47
> 5x² + 2 = 47
> 5x² = 45
> x² = 9
> x = ± 3.
This is the required answer.
________________________________________________________
Additional Information :
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
_______________________________________________________
Answer:
➠ ( 2x + 1 )² + ( x + 1 )² = 6x + 47
➻ ( 2x)² + 2.2x.1 + ( 1 )² + ( x )² +2.x.1 + ( 1 )² = 6x + 47
➻ 4x² + 4x + 1 + x² + 2x + 1 = 6x + 47
➻ 5x² + 6x - 6x + 2 = 47
➻ 5x² + 2 = 47
➻ 5x² = 47 - 2
➻ 5x² = 45
➻ x² = 45/5
➻ x² = 9
➻ x = √3
➻ x = ±3
∴ The solution is x = 3 or x = - 3.