Math, asked by wwwridervijay, 8 months ago

সমাধান করো : (2x+1)-
(2x+1)
2​

Attachments:

Answers

Answered by Ganesh6775
51

\huge\red{\tt{\underline {Required\:Answer:}}}

(2x + 1)  + \frac {3}{(2x + 1)}  = 4  \\ \implies\frac {4 {x}^{2} + 4x + 1 + 3 } {2x + 1}  = 4 \\\implies \frac {4( {x}^{2} + x + 1) }{2x + 1} = 4 \\\implies{x}^{2}  + x + 1 = 2x + 1 \\\implies {x}^{2}  + x - 2x = 1 -1 \\\implies {x}^{2}  - x = 0 \\\implies x(x - 1) = 0

হয়, x = 0 নতুবা, x = 1

নির্ণেয় সমাধান : x = 0, 1

______________________________________________________

Answered by Anonymous
19

দেওয়া আছে :-

  • \sf(2x + 1)  +\sf \dfrac {3}{(2x + 1)}  = 4

খুঁজতে হবে :-

  • Value of "X"

সমাধান :-

প্রশ্ন অনুসারে,

  • \sf(2x + 1)  +\sf \dfrac {3}{(2x + 1)}  = 4  \\\\

\sf : \implies\sf\dfrac {4 {x}^{2} + 4x + 1 + 3 } {2x + 1}  = 4\\\\

\sf:\implies\sf \dfrac {4( {x}^{2} + x + 1) }{2x + 1} = 4\\\\

\sf:\implies{x}^{2}  + x + 1 = 2x + 1\\\\

\sf:\implies {x}^{2}  + x - 2x = 1 -1\\\\

\sf:\implies {x}^{2}  - x = 0\\\\

\sf:\implies x(x - 1) = 0 \\\\

তাহলে,

:\implies{\underline{\boxed{\frak{\red{x  = 0}}}}}\;\bigstar

অথবা,

\sf:\implies (x - 1) = 0 \\\\

:\implies{\underline{\boxed{\frak{\red{x  = 1}}}}}\;\bigstar

\boxed {\sf {\purple {সুতরাং , x \ এর \ মান  \  হলো  \ 1 \ or \ 0.}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions