Math, asked by mamtabansal004, 1 month ago

(2x + 1 )^3.
By identify (a+b)^3 = a^3 + b^3 + 3a^b + 3ab^2​

Answers

Answered by michaelgimmy
1

Question :

Factorize : \mathtt{(2x + 1)^3}

\begin {gathered} \end {gathered}

Solution :

Putting 2x = a and 1 = b, we get -

\begin {gathered} \end {gathered}

\begin {aligned} \bold {(2x + 1)^3} &\Rightarrow \boxed {\mathtt {(a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2}}\\\\&\Rightarrow (2x)^3 + 1^3 + [3 \times (2x)^2 \times 1] + [3 \times 2x \times (1)^2]\\\\&\Rightarrow 8x^3 + 1 + 12x^2 + 6x \\\\\therefore \ \bold {(2x + 1)^3} &= \bf 8x^3 + 12x^2 + 6x + 1 \end {aligned}

\begin {gathered} \end {gathered}

Additional Information :-

Some more Formulae used for Factorization :-

\begin {gathered} \end {gathered}

\bullet \ \mathtt {(a + b)^2 = a^2 + 2ab + b^2}

\bullet \ \mathtt{(a - b)^2 = a^2 - 2ab + b^2}

\bullet \ \mathtt{(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca}

\begin {aligned} \bullet \ \mathtt{(a - b)^3} &= \mathtt {a^3 - b^3 - 3ab(a - b)}\\\\&\rightarrow \mathtt {a^3 - b^3 - 3a^2b + 3ab^2} \end {aligned}

\begin {aligned} \bullet \ \mathtt{(a + b)^3} &= \mathtt {a^3 + b^3 + 3ab(a + b)}\\\\&\rightarrow \mathtt {a^3 + b^3 + 3a^2b + 3ab^2} \end {aligned}

\bullet \ \mathtt{a^2 - b^2 = (a + b)(a - b)}

\bullet \ \mathtt{x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)}

Similar questions