Math, asked by manyata123chaturvedi, 25 days ago

2x+1/7+5y-3/3 =12 and3x+2/2-4y+3/6=13 solve by substitution

Answers

Answered by BrainlyTwinklingstar
2

Answer

\sf \dashrightarrow \dfrac{2x + 1}{7} + \dfrac{5y - 3}{3} = 12 \: \: --- (i)

\sf \dashrightarrow \dfrac{3x + 2}{2} - \dfrac{4y + 3}{6} = 13 \: \: --- (ii)

By first equation,

\sf \dashrightarrow \dfrac{2x + 1}{7} + \dfrac{5y - 3}{3} = 12

\sf \dashrightarrow \dfrac{6x + 3}{21} + \dfrac{35y - 21}{21} = 12

\sf \dashrightarrow \dfrac{6x + 3 + 35y - 21}{21} = 12

\sf \dashrightarrow \dfrac{6x + 35y - 18}{21} = 12

\sf \dashrightarrow 6x + 35y - 18 = 21 \times 12

\sf \dashrightarrow 6x + 35y - 18 = 252

\sf \dashrightarrow 6x + 35y = 252 + 18

\sf \dashrightarrow 6x + 35y = 270 \: \: --- (iii)

By second equation,

\sf \dashrightarrow \dfrac{3x + 2}{2} - \dfrac{4y + 3}{6} = 13

\sf \dashrightarrow \dfrac{9x + 6}{6} - \dfrac{4y + 3}{6} = 13

\sf \dashrightarrow \dfrac{9x + 6 - 4y + 3}{6} = 13

\sf \dashrightarrow \dfrac{9x - 4y + 9}{6} = 13

\sf \dashrightarrow 9x - 4y + 9 = 13 \times 6

\sf \dashrightarrow 9x - 4y + 9 = 78

\sf \dashrightarrow 9x - 4y = 78 - 9

\sf \dashrightarrow 9x - 4y = 69 \: \: --- (iv)

By third equation,

\sf \dashrightarrow 6x + 35y = 270

\sf \dashrightarrow 6x = 270 - 35y

\sf \dashrightarrow x = \dfrac{270 - 35y}{6}

Now, we can find the value of y by fourth equation.

\sf \dashrightarrow 9x - 4y = 69

\sf \dashrightarrow 9 \bigg( \dfrac{270 - 35y}{6} \bigg) - 4y = 69

\sf \dashrightarrow \dfrac{2430 - 315y}{6} - 4y = 69

\sf \dashrightarrow \dfrac{2460 - 315y - 24y}{6} = 69

\sf \dashrightarrow \dfrac{2460 - 339y}{6} = 69

\sf \dashrightarrow 2460 - 339y = 69 \times 6

\sf \dashrightarrow 2460 - 339y = 414

\sf \dashrightarrow -339y = 414 - 2460

\sf \dashrightarrow -339y = -2046

\sf \dashrightarrow y = \dfrac{-2046}{-339}

\sf \dashrightarrow y = \dfrac{682}{113}

Now, we can find the value of x by third equation.

\sf \dashrightarrow 6x + 35y = 270

\sf \dashrightarrow 6x + 35 \bigg( \dfrac{682}{113} \bigg) = 270

\sf \dashrightarrow 6x + \dfrac{23870}{113} = 270

\sf \dashrightarrow 6x = 270 - \dfrac{23870}{113}

\sf \dashrightarrow 6x = \dfrac{30510 - 23870}{113}

\sf \dashrightarrow 6x = \dfrac{6640}{113}

\sf \dashrightarrow x = \dfrac{\dfrac{6640}{113}}{6}

\sf \dashrightarrow x = \dfrac{6640}{113} \times \dfrac{1}{6}

\sf \dashrightarrow x = \dfrac{6640}{678}

\sf \dashrightarrow x = \dfrac{3320}{389}

Hence, the values of x and y are \sf \dfrac{3320}{389} and \sf \dfrac{682}{113} respectively.

Similar questions