Math, asked by aniljadhavjj5122, 4 months ago

2x+1/x^3+3x^2+2x resolve partial fraction​

Answers

Answered by mathdude500
4

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\sf \: \:  \:   ⟼\dfrac{2x + 1}{ {x}^{3} + 3 {x}^{2}  + 2x }

\sf \: \:  \:   ⟼\dfrac{2x + 1}{x \: ( {x}^{2 } + 3x + 2) }

\sf \: \:   ⟼\dfrac{2x + 1}{x \: ( {x}^{2}  + 2x + x + 2)}

\sf \: \:   ⟼\dfrac{2x + 1}{x \bigg(x(x + 2) + 1(x + 2) \bigg)}

\sf \:  \:  ⟼\dfrac{2x + 1}{x \: (x + 2) \: (x + 1)}

\sf \:  ⟼Let \:  \dfrac{2x + 1}{x \: (x + 1) \: (x + 2)}  =  \dfrac{A}{x}  +  \dfrac{B}{x + 1}  +  \dfrac{C}{x + 2} \sf \:  ⟼ \: (1)

☆ On taking LCM as x(x+1)(x+2), we get

\sf \: 2x + 1 = A(x + 1)(x + 2) + B(x)(x + 2) + C(x)(x + 1)\sf \:  ⟼(2)

\large\underline\red{\bold{❥︎Step :- 1 }}

\sf \: Substituting \:  'x = 0'  \: in \:  the  \: equation \: (2),  \:  we  \: get

\sf \:  ⟼1 = A(1)(2)

\bf\implies \:A = \dfrac{1}{2} \sf \:  ⟼ \: (3)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 2 }}

\sf \: Substituting \:  'x =  - 1'  \: in \:  the  \: equation \: (2),  \:  we  \: get

\sf \:  ⟼ - 2 \:  +  \: 1 = B \: ( - 1) \: (1)

\bf\implies \:B = 1 \: \sf \:  ⟼ \: (4)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 3 }}

\sf \:  Substituting \:  'x =  - 2'  \: in \:  the  \: equation \: (2),  \:  we  \: get

\sf \:  ⟼ \:  - 4 + 1 = C( - 2)( - 1)

\bf\implies \:C =  - \dfrac{3}{2}  \: \sf \:  ⟼ \: (5)

─━─━─━─━─━─━─━─━─━─━─━─━─

\sf \: Substituting \: equation \: (3), \: (4), \: (5)\: in \:  the  \: equation \: (1),  \:  we  \: get

\sf \:   \therefore \:  \dfrac{2x + 1}{x \: (x + 1) \: (x + 2)}  =  \dfrac{1}{2 \: x}  +  \dfrac{1}{x + 1}   -   \dfrac{3}{2 \: (x + 2)} \sf \: 

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions